内映射徘徊集的伪博歇尔成分

Igor Yu. Vlasenko
{"title":"内映射徘徊集的伪博歇尔成分","authors":"Igor Yu. Vlasenko","doi":"arxiv-2407.19251","DOIUrl":null,"url":null,"abstract":"This article explores the topology of Pseudo-B\\\"ottcher totally invariant\nconnected components of the wandering set in dynamical systems generated by\non-invertible inner (open surjective isolated) mappings of compact surfaces. We\ndescribe the possible topological types of these invariant connected subsets,\nwhich are more diverse then corresponding components of homeomorphisms.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Böttcher components of the wandering set of inner mappings\",\"authors\":\"Igor Yu. Vlasenko\",\"doi\":\"arxiv-2407.19251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the topology of Pseudo-B\\\\\\\"ottcher totally invariant\\nconnected components of the wandering set in dynamical systems generated by\\non-invertible inner (open surjective isolated) mappings of compact surfaces. We\\ndescribe the possible topological types of these invariant connected subsets,\\nwhich are more diverse then corresponding components of homeomorphisms.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了由紧凑曲面的不可逆内映射(开放的投射孤立映射)所产生的动力系统中的游走集的完全不变量连接子集(Pseudo-B\"otcher totally invariant connected components of the wandering set)的拓扑学。我们描述了这些不变连通子集的可能拓扑类型,它们比同态的相应分量更多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-Böttcher components of the wandering set of inner mappings
This article explores the topology of Pseudo-B\"ottcher totally invariant connected components of the wandering set in dynamical systems generated by on-invertible inner (open surjective isolated) mappings of compact surfaces. We describe the possible topological types of these invariant connected subsets, which are more diverse then corresponding components of homeomorphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信