超三维空间与剪枝树支系空间同构

Itamar Bellaïche
{"title":"超三维空间与剪枝树支系空间同构","authors":"Itamar Bellaïche","doi":"arxiv-2407.21763","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that every ultrametric space is homeomorphic to a\nclade space of a pruned tree, i.e., a subspace of a tree's canopy. Furthermore,\nit characterizes several topological properties of ultrametrizable spaces\nthrough the features of their representing trees. This approach suggests that\ntopological properties of ultrametrizable spaces should be studies via the\nstudy of naturally ordered pruned trees.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrametrizable spaces are homeomorphic to clade spaces of pruned trees\",\"authors\":\"Itamar Bellaïche\",\"doi\":\"arxiv-2407.21763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates that every ultrametric space is homeomorphic to a\\nclade space of a pruned tree, i.e., a subspace of a tree's canopy. Furthermore,\\nit characterizes several topological properties of ultrametrizable spaces\\nthrough the features of their representing trees. This approach suggests that\\ntopological properties of ultrametrizable spaces should be studies via the\\nstudy of naturally ordered pruned trees.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了每一个超对称空间都与一棵修剪过的树的树冠空间(即树冠的子空间)同构。此外,本文还通过超对称空间代表树的特征,描述了超对称空间的几个拓扑性质。这种方法表明,应该通过研究自然有序的修剪树来研究超三叉空间的拓扑性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrametrizable spaces are homeomorphic to clade spaces of pruned trees
This paper demonstrates that every ultrametric space is homeomorphic to a clade space of a pruned tree, i.e., a subspace of a tree's canopy. Furthermore, it characterizes several topological properties of ultrametrizable spaces through the features of their representing trees. This approach suggests that topological properties of ultrametrizable spaces should be studies via the study of naturally ordered pruned trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信