{"title":"超三维空间与剪枝树支系空间同构","authors":"Itamar Bellaïche","doi":"arxiv-2407.21763","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that every ultrametric space is homeomorphic to a\nclade space of a pruned tree, i.e., a subspace of a tree's canopy. Furthermore,\nit characterizes several topological properties of ultrametrizable spaces\nthrough the features of their representing trees. This approach suggests that\ntopological properties of ultrametrizable spaces should be studies via the\nstudy of naturally ordered pruned trees.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrametrizable spaces are homeomorphic to clade spaces of pruned trees\",\"authors\":\"Itamar Bellaïche\",\"doi\":\"arxiv-2407.21763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates that every ultrametric space is homeomorphic to a\\nclade space of a pruned tree, i.e., a subspace of a tree's canopy. Furthermore,\\nit characterizes several topological properties of ultrametrizable spaces\\nthrough the features of their representing trees. This approach suggests that\\ntopological properties of ultrametrizable spaces should be studies via the\\nstudy of naturally ordered pruned trees.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrametrizable spaces are homeomorphic to clade spaces of pruned trees
This paper demonstrates that every ultrametric space is homeomorphic to a
clade space of a pruned tree, i.e., a subspace of a tree's canopy. Furthermore,
it characterizes several topological properties of ultrametrizable spaces
through the features of their representing trees. This approach suggests that
topological properties of ultrametrizable spaces should be studies via the
study of naturally ordered pruned trees.