虫洞重正化:引力路径积分、全息术和拓扑变化的规整组

Elliott Gesteau, Matilde Marcolli, Jacob McNamara
{"title":"虫洞重正化:引力路径积分、全息术和拓扑变化的规整组","authors":"Elliott Gesteau, Matilde Marcolli, Jacob McNamara","doi":"arxiv-2407.20324","DOIUrl":null,"url":null,"abstract":"We study the Factorization Paradox from the bottom up by adapting methods\nfrom perturbative renormalization. Just as quantum field theories are plagued\nwith loop divergences that need to be cancelled systematically by introducing\ncounterterms, gravitational path integrals are plagued by wormhole\ncontributions that spoil the factorization of the holographic dual. These\nwormholes must be cancelled by some stringy effects in a UV complete,\nholographic theory of quantum gravity. In a simple model of two-dimensional\ntopological gravity, we outline a gravitational analog of the recursive BPHZ\nprocedure in order to systematically introduce ``counter-wormholes\" which\nparametrize the unknown stringy effects that lead to factorization. Underlying\nthis procedure is a Hopf algebra of symmetries which is analogous to the\nConnes--Kreimer Hopf algebra underlying perturbative renormalization. The group\ndual to this Hopf algebra acts to reorganize contributions from spacetimes with\ndistinct topology, and can be seen as a gauge group relating various equivalent\nways of constructing a factorizing gravitational path integral.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"295 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wormhole Renormalization: The gravitational path integral, holography, and a gauge group for topology change\",\"authors\":\"Elliott Gesteau, Matilde Marcolli, Jacob McNamara\",\"doi\":\"arxiv-2407.20324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Factorization Paradox from the bottom up by adapting methods\\nfrom perturbative renormalization. Just as quantum field theories are plagued\\nwith loop divergences that need to be cancelled systematically by introducing\\ncounterterms, gravitational path integrals are plagued by wormhole\\ncontributions that spoil the factorization of the holographic dual. These\\nwormholes must be cancelled by some stringy effects in a UV complete,\\nholographic theory of quantum gravity. In a simple model of two-dimensional\\ntopological gravity, we outline a gravitational analog of the recursive BPHZ\\nprocedure in order to systematically introduce ``counter-wormholes\\\" which\\nparametrize the unknown stringy effects that lead to factorization. Underlying\\nthis procedure is a Hopf algebra of symmetries which is analogous to the\\nConnes--Kreimer Hopf algebra underlying perturbative renormalization. The group\\ndual to this Hopf algebra acts to reorganize contributions from spacetimes with\\ndistinct topology, and can be seen as a gauge group relating various equivalent\\nways of constructing a factorizing gravitational path integral.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"295 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用微扰重正化方法,自下而上地研究了因式分解悖论。正如量子场论受到环路发散的困扰,需要通过引入反项来系统地消除一样,引力路径积分也受到虫洞贡献的困扰,破坏了全息对偶的因式分解。在紫外完整全息量子引力理论中,这些虫洞必须通过一些弦效应来抵消。在一个简单的二维拓扑引力模型中,我们概述了递归BPHZ过程的引力类似物,以便系统地引入 "反虫洞",从而参数化导致因式分解的未知弦效应。这个过程的基础是一个对称的霍普夫代数,它类似于扰动重正化所依据的康纳斯-克里默霍普夫代数。这个霍普夫代数的对偶群起着重组来自不同拓扑的时空的贡献的作用,可以看成是与构造因式化引力路径积分的各种等效方法相关的规规群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wormhole Renormalization: The gravitational path integral, holography, and a gauge group for topology change
We study the Factorization Paradox from the bottom up by adapting methods from perturbative renormalization. Just as quantum field theories are plagued with loop divergences that need to be cancelled systematically by introducing counterterms, gravitational path integrals are plagued by wormhole contributions that spoil the factorization of the holographic dual. These wormholes must be cancelled by some stringy effects in a UV complete, holographic theory of quantum gravity. In a simple model of two-dimensional topological gravity, we outline a gravitational analog of the recursive BPHZ procedure in order to systematically introduce ``counter-wormholes" which parametrize the unknown stringy effects that lead to factorization. Underlying this procedure is a Hopf algebra of symmetries which is analogous to the Connes--Kreimer Hopf algebra underlying perturbative renormalization. The group dual to this Hopf algebra acts to reorganize contributions from spacetimes with distinct topology, and can be seen as a gauge group relating various equivalent ways of constructing a factorizing gravitational path integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信