论映射类群的非半简单量子表示的积分性

Marco De Renzi, Jules Martel
{"title":"论映射类群的非半简单量子表示的积分性","authors":"Marco De Renzi, Jules Martel","doi":"arxiv-2407.20644","DOIUrl":null,"url":null,"abstract":"For a root of unity $\\zeta$ of odd prime order, we restrict coefficients of\nnon-semisimple quantum representations of mapping class groups associated with\nthe small quantum group $\\mathfrak{u}_\\zeta \\mathfrak{sl}_2$ from\n$\\mathbb{Q}(\\zeta)$ to $\\mathbb{Z}[\\zeta]$. We do this by exhibiting explicit\nbases of states spaces that span $\\mathbb{Z}[\\zeta]$-lattices that are\ninvariant under projective actions of mapping class groups.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Integrality of Non-Semisimple Quantum Representations of Mapping Class Groups\",\"authors\":\"Marco De Renzi, Jules Martel\",\"doi\":\"arxiv-2407.20644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a root of unity $\\\\zeta$ of odd prime order, we restrict coefficients of\\nnon-semisimple quantum representations of mapping class groups associated with\\nthe small quantum group $\\\\mathfrak{u}_\\\\zeta \\\\mathfrak{sl}_2$ from\\n$\\\\mathbb{Q}(\\\\zeta)$ to $\\\\mathbb{Z}[\\\\zeta]$. We do this by exhibiting explicit\\nbases of states spaces that span $\\\\mathbb{Z}[\\\\zeta]$-lattices that are\\ninvariant under projective actions of mapping class groups.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于奇素数阶的合根 $\zeta$,我们将与小量子群 $\mathfrak{u}_\zeta \mathfrak{sl}_2$ 相关联的映射类群的非半纯量子表示的系数从 $\mathbb{Q}(\zeta)$ 限制到 $\mathbb{Z}[\zeta]$ 。我们通过展示跨 $\mathbb{Z}[\zeta]$ 格的状态空间的显式基,这些状态空间在映射类群的投影作用下是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Integrality of Non-Semisimple Quantum Representations of Mapping Class Groups
For a root of unity $\zeta$ of odd prime order, we restrict coefficients of non-semisimple quantum representations of mapping class groups associated with the small quantum group $\mathfrak{u}_\zeta \mathfrak{sl}_2$ from $\mathbb{Q}(\zeta)$ to $\mathbb{Z}[\zeta]$. We do this by exhibiting explicit bases of states spaces that span $\mathbb{Z}[\zeta]$-lattices that are invariant under projective actions of mapping class groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信