Erik Brodsky, Eva Engel, Connor Panish, Lillian Stolberg
{"title":"D 型 ASEP 的比较分析:随机融合和晶体基础","authors":"Erik Brodsky, Eva Engel, Connor Panish, Lillian Stolberg","doi":"arxiv-2407.21015","DOIUrl":null,"url":null,"abstract":"The Type D asymmetric simple exclusion process (ASEP) is a particle system\ninvolving two classes of particles that can be viewed from both a probabilistic\nand an algebraic perspective (arXiv:2011.13473). From a probabilistic\nperspective, we perform stochastic fusion on the Type D ASEP and analyze the\noutcome on generator matrices, limits of drift speed, stationary distributions,\nand Markov self-duality. From an algebraic perspective, we construct a fused\nType D ASEP system from a Casimir element of $U_q(so_6)$, using crystal bases\nto analyze and manipulate various representations of $U_q(so_6)$. We conclude\nthat both approaches produce different processes and therefore the previous\nmethod of arXiv:1908.02359, which analyzed the usual ASEP, does not generalize\nto all finite-dimensional simple Lie algebras.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases\",\"authors\":\"Erik Brodsky, Eva Engel, Connor Panish, Lillian Stolberg\",\"doi\":\"arxiv-2407.21015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Type D asymmetric simple exclusion process (ASEP) is a particle system\\ninvolving two classes of particles that can be viewed from both a probabilistic\\nand an algebraic perspective (arXiv:2011.13473). From a probabilistic\\nperspective, we perform stochastic fusion on the Type D ASEP and analyze the\\noutcome on generator matrices, limits of drift speed, stationary distributions,\\nand Markov self-duality. From an algebraic perspective, we construct a fused\\nType D ASEP system from a Casimir element of $U_q(so_6)$, using crystal bases\\nto analyze and manipulate various representations of $U_q(so_6)$. We conclude\\nthat both approaches produce different processes and therefore the previous\\nmethod of arXiv:1908.02359, which analyzed the usual ASEP, does not generalize\\nto all finite-dimensional simple Lie algebras.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
D型非对称简单排斥过程(ASEP)是一个涉及两类粒子的粒子系统,可以从概率和代数的角度来看待它(arXiv:2011.13473)。从概率论的角度,我们对 D 型 ASEP 进行了随机融合,并分析了生成矩阵、漂移速度极限、静态分布和马尔可夫自偶性的结果。从代数的角度看,我们从$U_q(so_6)$的卡西米尔元构建了一个融合的D型ASEP系统,并利用晶体基础分析和处理了$U_q(so_6)$的各种表示。我们得出结论:这两种方法会产生不同的过程,因此 arXiv:1908.02359 以前分析通常 ASEP 的方法并不能推广到所有有限维简单李代数。
Comparative Analyses of the Type D ASEP: Stochastic Fusion and Crystal Bases
The Type D asymmetric simple exclusion process (ASEP) is a particle system
involving two classes of particles that can be viewed from both a probabilistic
and an algebraic perspective (arXiv:2011.13473). From a probabilistic
perspective, we perform stochastic fusion on the Type D ASEP and analyze the
outcome on generator matrices, limits of drift speed, stationary distributions,
and Markov self-duality. From an algebraic perspective, we construct a fused
Type D ASEP system from a Casimir element of $U_q(so_6)$, using crystal bases
to analyze and manipulate various representations of $U_q(so_6)$. We conclude
that both approaches produce different processes and therefore the previous
method of arXiv:1908.02359, which analyzed the usual ASEP, does not generalize
to all finite-dimensional simple Lie algebras.