利用液氮和莱顿弗罗斯特效应测量金属比热的简单、快速和娱乐方法

Q3 Social Sciences
F Dourado, J Barreto, G Bonfait
{"title":"利用液氮和莱顿弗罗斯特效应测量金属比热的简单、快速和娱乐方法","authors":"F Dourado, J Barreto, G Bonfait","doi":"10.1088/1361-6552/ad5eeb","DOIUrl":null,"url":null,"abstract":"Taking advantage of the fascination of ‘playing’ with liquid nitrogen, this article proposes a didactical experiment involving the use of this liquid to measure the heat capacity of cylindrical metallic blocks (copper, aluminum, brass, and stainless steel; volume ≈ 20 cm<sup>3</sup>). It also permits to demonstrate qualitatively and quantitatively the Leidenfrost effect. The experimental setup consists of a low-cost recipient adequate for liquid N2 storage, a multimeter and a weighing scale. The experience starts by a rapid immersion of metallic block in liquid N2 and by measuring simultaneously the block’s temperature and the mass of the evaporated liquid along the cooling process. Knowing the latent heat of the liquid <inline-formula>\n<tex-math><?CDATA $L$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"pedad5eebieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, the evaporated mass <inline-formula>\n<tex-math><?CDATA $\\Delta m$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>m</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"pedad5eebieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> during a temperature variation <inline-formula>\n<tex-math><?CDATA $\\Delta T$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"pedad5eebieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, the heat capacity is obtained by <inline-formula>\n<tex-math><?CDATA $Cp = L{\\text{ }}\\Delta m/\\Delta T$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mi>L</mml:mi><mml:mrow><mml:mtext> </mml:mtext></mml:mrow><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>m</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"pedad5eebieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. This method allowed to measure the specific heat in the 100–270 K temperature range in less than 3 min and the results are in quite good agreement with the literature data. On the other hand, the cooling rate, measured by temperature and liquid N2 change, clearly shows two regimes as expected by the Leidenfrost effect and the critical heat flux calculated is in good agreement with previous experiments. Such an experiment can be adapted to various student levels and present a didactical approach to important thermodynamical concepts in parallel with appealing phenomena.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple, rapid and entertaining method to measure specific heat of metals using liquid nitrogen and Leidenfrost effect\",\"authors\":\"F Dourado, J Barreto, G Bonfait\",\"doi\":\"10.1088/1361-6552/ad5eeb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking advantage of the fascination of ‘playing’ with liquid nitrogen, this article proposes a didactical experiment involving the use of this liquid to measure the heat capacity of cylindrical metallic blocks (copper, aluminum, brass, and stainless steel; volume ≈ 20 cm<sup>3</sup>). It also permits to demonstrate qualitatively and quantitatively the Leidenfrost effect. The experimental setup consists of a low-cost recipient adequate for liquid N2 storage, a multimeter and a weighing scale. The experience starts by a rapid immersion of metallic block in liquid N2 and by measuring simultaneously the block’s temperature and the mass of the evaporated liquid along the cooling process. Knowing the latent heat of the liquid <inline-formula>\\n<tex-math><?CDATA $L$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"pedad5eebieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, the evaporated mass <inline-formula>\\n<tex-math><?CDATA $\\\\Delta m$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>m</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"pedad5eebieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> during a temperature variation <inline-formula>\\n<tex-math><?CDATA $\\\\Delta T$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"pedad5eebieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, the heat capacity is obtained by <inline-formula>\\n<tex-math><?CDATA $Cp = L{\\\\text{ }}\\\\Delta m/\\\\Delta T$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mi>L</mml:mi><mml:mrow><mml:mtext> </mml:mtext></mml:mrow><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>m</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"pedad5eebieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. This method allowed to measure the specific heat in the 100–270 K temperature range in less than 3 min and the results are in quite good agreement with the literature data. On the other hand, the cooling rate, measured by temperature and liquid N2 change, clearly shows two regimes as expected by the Leidenfrost effect and the critical heat flux calculated is in good agreement with previous experiments. Such an experiment can be adapted to various student levels and present a didactical approach to important thermodynamical concepts in parallel with appealing phenomena.\",\"PeriodicalId\":39773,\"journal\":{\"name\":\"Physics Education\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6552/ad5eeb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad5eeb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

利用 "玩 "液氮的魅力,本文提出了一个教学实验,利用这种液体测量圆柱形金属块(铜、铝、黄铜和不锈钢;体积 ≈ 20 cm3)的热容量。它还可以定性和定量地证明莱顿弗罗斯特效应。实验装置包括一个足以储存液态 N2 的低成本接收器、一个万用表和一个称重秤。首先将金属块快速浸入液态 N2 中,然后在冷却过程中同时测量金属块的温度和蒸发液体的质量。知道了液体的潜热 L 和温度变化 ΔT 时的蒸发质量 Δm,就可以通过 Cp=L Δm/ΔT 得出热容量。这种方法可以在不到 3 分钟的时间内测量 100-270 K 温度范围内的比热,测量结果与文献数据相当吻合。另一方面,通过温度和液态 N2 变化测量的冷却速率明显呈现出莱顿弗罗斯特效应所预期的两种状态,计算出的临界热通量与之前的实验结果十分吻合。这样的实验可适用于不同层次的学生,是一种与吸引人的现象并行的重要热力学概念的教学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple, rapid and entertaining method to measure specific heat of metals using liquid nitrogen and Leidenfrost effect
Taking advantage of the fascination of ‘playing’ with liquid nitrogen, this article proposes a didactical experiment involving the use of this liquid to measure the heat capacity of cylindrical metallic blocks (copper, aluminum, brass, and stainless steel; volume ≈ 20 cm3). It also permits to demonstrate qualitatively and quantitatively the Leidenfrost effect. The experimental setup consists of a low-cost recipient adequate for liquid N2 storage, a multimeter and a weighing scale. The experience starts by a rapid immersion of metallic block in liquid N2 and by measuring simultaneously the block’s temperature and the mass of the evaporated liquid along the cooling process. Knowing the latent heat of the liquid L , the evaporated mass Δm during a temperature variation ΔT , the heat capacity is obtained by Cp=LΔm/ΔT . This method allowed to measure the specific heat in the 100–270 K temperature range in less than 3 min and the results are in quite good agreement with the literature data. On the other hand, the cooling rate, measured by temperature and liquid N2 change, clearly shows two regimes as expected by the Leidenfrost effect and the critical heat flux calculated is in good agreement with previous experiments. Such an experiment can be adapted to various student levels and present a didactical approach to important thermodynamical concepts in parallel with appealing phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Education
Physics Education Social Sciences-Education
CiteScore
1.50
自引率
0.00%
发文量
195
期刊介绍: Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信