关于从海量数据中抽样预测罕见事件

Pub Date : 2024-07-29 DOI:10.1080/03610918.2024.2378149
Johanna de Haan-Ward, Simon J. Bonner, Douglas Woolford
{"title":"关于从海量数据中抽样预测罕见事件","authors":"Johanna de Haan-Ward, Simon J. Bonner, Douglas Woolford","doi":"10.1080/03610918.2024.2378149","DOIUrl":null,"url":null,"abstract":"When modeling rare events using logistic regression, independent samples of event occurrence (ones) and nonoccurrence (zeros) are commonly taken from large datasets in order to fit models efficient...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the prediction of rare events when sampling from large data\",\"authors\":\"Johanna de Haan-Ward, Simon J. Bonner, Douglas Woolford\",\"doi\":\"10.1080/03610918.2024.2378149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When modeling rare events using logistic regression, independent samples of event occurrence (ones) and nonoccurrence (zeros) are commonly taken from large datasets in order to fit models efficient...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2024.2378149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610918.2024.2378149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在使用逻辑回归对罕见事件进行建模时,通常会从大型数据集中提取事件发生(1)和不发生(0)的独立样本,以拟合出高效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the prediction of rare events when sampling from large data
When modeling rare events using logistic regression, independent samples of event occurrence (ones) and nonoccurrence (zeros) are commonly taken from large datasets in order to fit models efficient...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信