$$\mathbb {R}^2$$ 上线性控制系统的控制集 .实际情况

Víctor Ayala, Adriano Da Silva, Anderson F. P. Rojas
{"title":"$$\\mathbb {R}^2$$ 上线性控制系统的控制集 .实际情况","authors":"Víctor Ayala, Adriano Da Silva, Anderson F. P. Rojas","doi":"10.1007/s00030-024-00987-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the dynamical behavior of a linear control system on <span>\\(\\mathbb {R}^2\\)</span> when the associated matrix has real eigenvalues. Different from the complex case, we show that the position of the control zero relative to the control range can have a strong interference in such dynamics if the matrix is not invertible. In the invertible case, we explicitly construct the unique control set with a nonempty interior.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control sets of linear control systems on $$\\\\mathbb {R}^2$$ . The real case\",\"authors\":\"Víctor Ayala, Adriano Da Silva, Anderson F. P. Rojas\",\"doi\":\"10.1007/s00030-024-00987-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the dynamical behavior of a linear control system on <span>\\\\(\\\\mathbb {R}^2\\\\)</span> when the associated matrix has real eigenvalues. Different from the complex case, we show that the position of the control zero relative to the control range can have a strong interference in such dynamics if the matrix is not invertible. In the invertible case, we explicitly construct the unique control set with a nonempty interior.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00987-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00987-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了当相关矩阵具有实特征值时,线性控制系统在 \(\mathbb {R}^2\) 上的动力学行为。与复数情况不同的是,我们发现如果矩阵不可逆,控制零点相对于控制范围的位置会对这种动力学产生强烈干扰。在可逆情况下,我们明确构建了具有非空内部的唯一控制集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Control sets of linear control systems on $$\mathbb {R}^2$$ . The real case

Control sets of linear control systems on $$\mathbb {R}^2$$ . The real case

In this paper, we study the dynamical behavior of a linear control system on \(\mathbb {R}^2\) when the associated matrix has real eigenvalues. Different from the complex case, we show that the position of the control zero relative to the control range can have a strong interference in such dynamics if the matrix is not invertible. In the invertible case, we explicitly construct the unique control set with a nonempty interior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信