若干类树枝状无性繁殖体的权利取消特性

Miguel Barata
{"title":"若干类树枝状无性繁殖体的权利取消特性","authors":"Miguel Barata","doi":"arxiv-2407.18959","DOIUrl":null,"url":null,"abstract":"We generalize a previous result of Stevenson to the category of dendroidal\nsets, yielding the right cancellation property of dendroidal inner anodynes\nwithin the class of normal monomorphisms. As an application of this property,\nwe show how to construct a symmetric monoidal $\\infty$-category\n$\\mathsf{Env}(X)^\\otimes$ from a dendroidal $\\infty$-operad $X$, in a way that\ngeneralizes the symmetric monoidal envelope of a coloured operad.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The right cancellation property for certain classes of dendroidal anodynes\",\"authors\":\"Miguel Barata\",\"doi\":\"arxiv-2407.18959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize a previous result of Stevenson to the category of dendroidal\\nsets, yielding the right cancellation property of dendroidal inner anodynes\\nwithin the class of normal monomorphisms. As an application of this property,\\nwe show how to construct a symmetric monoidal $\\\\infty$-category\\n$\\\\mathsf{Env}(X)^\\\\otimes$ from a dendroidal $\\\\infty$-operad $X$, in a way that\\ngeneralizes the symmetric monoidal envelope of a coloured operad.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将史蒂文森之前的一个结果推广到了树枝集合的范畴,从而在正态单项式类中得到了树枝内反函数的右取消性质。作为这个性质的一个应用,我们展示了如何从一个dendroidal $\infty$-operad $X$ 构造一个对称单环$\infty$-category$mathsf{Env}(X)^\otimes$,这个方法概括了彩色操作数的对称单环包络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The right cancellation property for certain classes of dendroidal anodynes
We generalize a previous result of Stevenson to the category of dendroidal sets, yielding the right cancellation property of dendroidal inner anodynes within the class of normal monomorphisms. As an application of this property, we show how to construct a symmetric monoidal $\infty$-category $\mathsf{Env}(X)^\otimes$ from a dendroidal $\infty$-operad $X$, in a way that generalizes the symmetric monoidal envelope of a coloured operad.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信