{"title":"若干类树枝状无性繁殖体的权利取消特性","authors":"Miguel Barata","doi":"arxiv-2407.18959","DOIUrl":null,"url":null,"abstract":"We generalize a previous result of Stevenson to the category of dendroidal\nsets, yielding the right cancellation property of dendroidal inner anodynes\nwithin the class of normal monomorphisms. As an application of this property,\nwe show how to construct a symmetric monoidal $\\infty$-category\n$\\mathsf{Env}(X)^\\otimes$ from a dendroidal $\\infty$-operad $X$, in a way that\ngeneralizes the symmetric monoidal envelope of a coloured operad.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The right cancellation property for certain classes of dendroidal anodynes\",\"authors\":\"Miguel Barata\",\"doi\":\"arxiv-2407.18959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize a previous result of Stevenson to the category of dendroidal\\nsets, yielding the right cancellation property of dendroidal inner anodynes\\nwithin the class of normal monomorphisms. As an application of this property,\\nwe show how to construct a symmetric monoidal $\\\\infty$-category\\n$\\\\mathsf{Env}(X)^\\\\otimes$ from a dendroidal $\\\\infty$-operad $X$, in a way that\\ngeneralizes the symmetric monoidal envelope of a coloured operad.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The right cancellation property for certain classes of dendroidal anodynes
We generalize a previous result of Stevenson to the category of dendroidal
sets, yielding the right cancellation property of dendroidal inner anodynes
within the class of normal monomorphisms. As an application of this property,
we show how to construct a symmetric monoidal $\infty$-category
$\mathsf{Env}(X)^\otimes$ from a dendroidal $\infty$-operad $X$, in a way that
generalizes the symmetric monoidal envelope of a coloured operad.