更高的组别和更高的正常性

Jonathan Beardsley, Landon Fox
{"title":"更高的组别和更高的正常性","authors":"Jonathan Beardsley, Landon Fox","doi":"arxiv-2407.21210","DOIUrl":null,"url":null,"abstract":"In this paper we continue Prasma's homotopical group theory program by\nconsidering homotopy normal maps in arbitrary $\\infty$-topoi. We show that maps\nof group objects equipped with normality data, in Prasma's sense, are algebras\nfor a \"normal closure\" monad in a way which generalizes the standard\nloops-suspension monad. We generalize a result of Prasma by showing that\nmonoidal functors of $\\infty$-topoi preserve normal maps or, equivalently, that\nmonoidal functors of $\\infty$-topoi preserve the property of \"being a fiber\"\nfor morphisms between connected objects. We also formulate Noether's\nIsomorphism Theorems in this setting, prove the first of them, and provide\ncounterexamples to the other two. Accomplishing these goals requires us to\nspend substantial time synthesizing existing work of Lurie so that we may\nrigorously talk about group objects in $\\infty$-topoi in the \"usual way.\" One\nnice result of this labor is the formulation and proof of an Orbit-Stabilizer\nTheorem for group actions in $\\infty$-topoi.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Groups and Higher Normality\",\"authors\":\"Jonathan Beardsley, Landon Fox\",\"doi\":\"arxiv-2407.21210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we continue Prasma's homotopical group theory program by\\nconsidering homotopy normal maps in arbitrary $\\\\infty$-topoi. We show that maps\\nof group objects equipped with normality data, in Prasma's sense, are algebras\\nfor a \\\"normal closure\\\" monad in a way which generalizes the standard\\nloops-suspension monad. We generalize a result of Prasma by showing that\\nmonoidal functors of $\\\\infty$-topoi preserve normal maps or, equivalently, that\\nmonoidal functors of $\\\\infty$-topoi preserve the property of \\\"being a fiber\\\"\\nfor morphisms between connected objects. We also formulate Noether's\\nIsomorphism Theorems in this setting, prove the first of them, and provide\\ncounterexamples to the other two. Accomplishing these goals requires us to\\nspend substantial time synthesizing existing work of Lurie so that we may\\nrigorously talk about group objects in $\\\\infty$-topoi in the \\\"usual way.\\\" One\\nnice result of this labor is the formulation and proof of an Orbit-Stabilizer\\nTheorem for group actions in $\\\\infty$-topoi.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过考虑任意$\infty$-topoi中的同调法线映射,继续普拉斯马的同调群理论计划。我们证明,在普拉斯马的意义上,配备了正态性数据的群对象映射是 "正态闭合 "一元体的数组,其方式概括了标准环-悬浮一元体。我们通过证明$\infty$-topoi的单复数函子保留了正态映射,或者,等价地,$\infty$-topoi的单复数函子保留了连接对象之间的态量 "是纤维 "的性质,从而推广了普拉斯马的一个结果。我们还在这种情况下提出了诺特同构定理,证明了其中的第一个定理,并为另外两个定理提供了反例。要实现这些目标,我们需要花大量时间综合卢里的现有工作,这样我们就可以用 "通常的方式 "来谈论$\infty$-topoi中的群对象。这项工作的一个重要成果是提出并证明了$\infty$-topoi中群作用的轨道稳定器定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Groups and Higher Normality
In this paper we continue Prasma's homotopical group theory program by considering homotopy normal maps in arbitrary $\infty$-topoi. We show that maps of group objects equipped with normality data, in Prasma's sense, are algebras for a "normal closure" monad in a way which generalizes the standard loops-suspension monad. We generalize a result of Prasma by showing that monoidal functors of $\infty$-topoi preserve normal maps or, equivalently, that monoidal functors of $\infty$-topoi preserve the property of "being a fiber" for morphisms between connected objects. We also formulate Noether's Isomorphism Theorems in this setting, prove the first of them, and provide counterexamples to the other two. Accomplishing these goals requires us to spend substantial time synthesizing existing work of Lurie so that we may rigorously talk about group objects in $\infty$-topoi in the "usual way." One nice result of this labor is the formulation and proof of an Orbit-Stabilizer Theorem for group actions in $\infty$-topoi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信