同调函数和差分算子

Robert Paré
{"title":"同调函数和差分算子","authors":"Robert Paré","doi":"arxiv-2407.21129","DOIUrl":null,"url":null,"abstract":"We establish a calculus of differences for taut endofunctors of the category\nof sets, analogous to the classical calculus of finite differences for real\nvalued functions. We study how the difference operator interacts with limits\nand colimits as categorical versions of the usual product and sum rules. The\nfirst main result is a lax chain rule which has no counterpart for mere\nfunctions. We also show that many important classes of functors (polynomials,\nanalytic functors, reduced powers, ...) are taut, and calculate explicit\nformulas for their differences. Covariant Dirichlet series are introduced and\nstudied. The second main result is a Newton summation formula expressed as an\nadjoint to the difference operator.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taut functors and the difference operator\",\"authors\":\"Robert Paré\",\"doi\":\"arxiv-2407.21129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a calculus of differences for taut endofunctors of the category\\nof sets, analogous to the classical calculus of finite differences for real\\nvalued functions. We study how the difference operator interacts with limits\\nand colimits as categorical versions of the usual product and sum rules. The\\nfirst main result is a lax chain rule which has no counterpart for mere\\nfunctions. We also show that many important classes of functors (polynomials,\\nanalytic functors, reduced powers, ...) are taut, and calculate explicit\\nformulas for their differences. Covariant Dirichlet series are introduced and\\nstudied. The second main result is a Newton summation formula expressed as an\\nadjoint to the difference operator.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为集合类的紧绷端函数建立了差分微积分,类似于实值函数的经典有限差分微积分。我们研究了差分算子如何与极限和临界点相互作用,它们是通常的乘积规则和求和规则的分类版本。第一个主要结果是一个宽松的链式规则,它对于纯函数没有对应的规则。我们还证明了许多重要的函数类(多项式、解析函数、还原幂......)是紧绷的,并计算了它们的差分的明确公式。引入并研究了协变狄利克列。第二个主要结果是一个牛顿求和公式,用差分算子的一个关节来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taut functors and the difference operator
We establish a calculus of differences for taut endofunctors of the category of sets, analogous to the classical calculus of finite differences for real valued functions. We study how the difference operator interacts with limits and colimits as categorical versions of the usual product and sum rules. The first main result is a lax chain rule which has no counterpart for mere functions. We also show that many important classes of functors (polynomials, analytic functors, reduced powers, ...) are taut, and calculate explicit formulas for their differences. Covariant Dirichlet series are introduced and studied. The second main result is a Newton summation formula expressed as an adjoint to the difference operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信