丰富$\infty$类别中内部操作数上的共品幂等价代数

Federico Ernesto Mocchetti
{"title":"丰富$\\infty$类别中内部操作数上的共品幂等价代数","authors":"Federico Ernesto Mocchetti","doi":"arxiv-2407.21706","DOIUrl":null,"url":null,"abstract":"In arXiv:1712.00555, H. Heine shows that given a symmetric monoidal\n$\\infty$-category $\\mathcal{V}$ and a weakly $\\mathcal{V}$-enriched monad $T$\nover an $\\infty$-category $\\mathcal{C}$, then there is an induced action of\n$\\mathcal{V}$ on $LMod_T(\\mathcal{C})$. Moreover, properties like tensoring or\nenrichment can be transferred from the action on $\\mathcal{C}$ to that on\n$LMod_T(\\mathcal{C})$. We see that the action of an internal operad $O \\in\nAlg(sSeq(\\mathcal{C}))$ can be interpreted as the action of a monad $T_O$, such\nthat $Alg_O(\\mathcal{C})\\cong LMod_{T_O}(\\mathcal{C})$. We can then prove that,\nunder a presentability assumption, if the category $\\mathcal{C}$ admits\ncotensors with respect to the action of $\\mathcal{V}$, then so does\n$Alg_O(\\mathcal{C})\\cong LMod_{T_O}(\\mathcal{C})$. This is used to show that\nthe coproduct-idempotent algebras are fixed by the induced tensoring action. We\napply this to the stable motivic homotopy category and prove that the tensor of\nany motivic sphere with rational motivic cohomology is equivalent to the\nlatter.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coproduct idempotent algebras over internal operads in enriched $\\\\infty$-categories\",\"authors\":\"Federico Ernesto Mocchetti\",\"doi\":\"arxiv-2407.21706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arXiv:1712.00555, H. Heine shows that given a symmetric monoidal\\n$\\\\infty$-category $\\\\mathcal{V}$ and a weakly $\\\\mathcal{V}$-enriched monad $T$\\nover an $\\\\infty$-category $\\\\mathcal{C}$, then there is an induced action of\\n$\\\\mathcal{V}$ on $LMod_T(\\\\mathcal{C})$. Moreover, properties like tensoring or\\nenrichment can be transferred from the action on $\\\\mathcal{C}$ to that on\\n$LMod_T(\\\\mathcal{C})$. We see that the action of an internal operad $O \\\\in\\nAlg(sSeq(\\\\mathcal{C}))$ can be interpreted as the action of a monad $T_O$, such\\nthat $Alg_O(\\\\mathcal{C})\\\\cong LMod_{T_O}(\\\\mathcal{C})$. We can then prove that,\\nunder a presentability assumption, if the category $\\\\mathcal{C}$ admits\\ncotensors with respect to the action of $\\\\mathcal{V}$, then so does\\n$Alg_O(\\\\mathcal{C})\\\\cong LMod_{T_O}(\\\\mathcal{C})$. This is used to show that\\nthe coproduct-idempotent algebras are fixed by the induced tensoring action. We\\napply this to the stable motivic homotopy category and prove that the tensor of\\nany motivic sphere with rational motivic cohomology is equivalent to the\\nlatter.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 arXiv:1712.00555 中,H. Heine 证明了给定一个对称单元$\infty$类别 $\mathcal{V}$和一个弱$\mathcal{V}$富集单元 $T$在一个$\infty$类别 $\mathcal{C}$上,那么在 $LMod_T(\mathcal{C})$上存在一个诱导的 $\mathcal{V}$作用。此外,张量富集等性质可以从 $\mathcal{C}$ 上的作用转移到 $LMod_T(\mathcal{C})$上的作用。我们可以看到,Alg(sSeq(\mathcal{C}))$ 中的内部运算元 $O 的作用可以被解释为单元 $T_O$ 的作用,这样 $Alg_O(\mathcal{C})\cong LMod_{T_O}(\mathcal{C})$。然后我们可以证明,在一个现存性假设下,如果范畴 $\mathcal{C}$ 承认关于 $\mathcal{V}$ 作用的共点,那么 $Alg_O(\mathcal{C})\cong LMod_{T_O}(\mathcal{C})$ 也是如此。我们可以利用这一点来证明共积-幂等代数是由诱导张角作用固定下来的。我们将此应用于稳定的动机同调范畴,并证明任何具有理性动机同调的动机球的张量都等价于后者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coproduct idempotent algebras over internal operads in enriched $\infty$-categories
In arXiv:1712.00555, H. Heine shows that given a symmetric monoidal $\infty$-category $\mathcal{V}$ and a weakly $\mathcal{V}$-enriched monad $T$ over an $\infty$-category $\mathcal{C}$, then there is an induced action of $\mathcal{V}$ on $LMod_T(\mathcal{C})$. Moreover, properties like tensoring or enrichment can be transferred from the action on $\mathcal{C}$ to that on $LMod_T(\mathcal{C})$. We see that the action of an internal operad $O \in Alg(sSeq(\mathcal{C}))$ can be interpreted as the action of a monad $T_O$, such that $Alg_O(\mathcal{C})\cong LMod_{T_O}(\mathcal{C})$. We can then prove that, under a presentability assumption, if the category $\mathcal{C}$ admits cotensors with respect to the action of $\mathcal{V}$, then so does $Alg_O(\mathcal{C})\cong LMod_{T_O}(\mathcal{C})$. This is used to show that the coproduct-idempotent algebras are fixed by the induced tensoring action. We apply this to the stable motivic homotopy category and prove that the tensor of any motivic sphere with rational motivic cohomology is equivalent to the latter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信