考虑齿形误差的准双曲面齿轮接触性能的稳健优化:设计灵敏度和帕累托前沿

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"考虑齿形误差的准双曲面齿轮接触性能的稳健优化:设计灵敏度和帕累托前沿","authors":"","doi":"10.1016/j.mechmachtheory.2024.105754","DOIUrl":null,"url":null,"abstract":"<div><p>Optimization of hypoid gear contact performance is challenging due to its nonconvex nature and the handling of non-linear constraints involving complex gear contact behavior. In addition, the contact performance in the existing optimization schemes is highly reliant on the manufacturing quality, for example, the uncertain tooth form errors induced by machining tolerances and blade wear are usually ignored. To tackle these problems, a robust optimization methodology is proposed for hypoid gear contact performance. A finite element/contact mechanics model is established, which considers the stochastic tooth form errors following a Gaussian distribution model. The non-linear constraints are incorporated to avoid edge contact under loaded conditions, and tooth surface interference due to error. This methodology guarantees the feasible solution space and reduces the optimization complexity by the independent identification model. The identification model of the optimal solution is flexible in the parameter selection while keeping tooth depth. This non-deterministic problem is optimized based on the pattern search method. The Pareto front and design sensitivity analysis demonstrate the effectiveness and robustness of the proposed optimization methodology.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimization of hypoid gear contact performance considering tooth form error: Design sensitivity and Pareto front\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimization of hypoid gear contact performance is challenging due to its nonconvex nature and the handling of non-linear constraints involving complex gear contact behavior. In addition, the contact performance in the existing optimization schemes is highly reliant on the manufacturing quality, for example, the uncertain tooth form errors induced by machining tolerances and blade wear are usually ignored. To tackle these problems, a robust optimization methodology is proposed for hypoid gear contact performance. A finite element/contact mechanics model is established, which considers the stochastic tooth form errors following a Gaussian distribution model. The non-linear constraints are incorporated to avoid edge contact under loaded conditions, and tooth surface interference due to error. This methodology guarantees the feasible solution space and reduces the optimization complexity by the independent identification model. The identification model of the optimal solution is flexible in the parameter selection while keeping tooth depth. This non-deterministic problem is optimized based on the pattern search method. The Pareto front and design sensitivity analysis demonstrate the effectiveness and robustness of the proposed optimization methodology.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001812\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001812","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于准双曲面齿轮的非凸特性以及涉及复杂齿轮接触行为的非线性约束的处理,优化准双曲面齿轮的接触性能具有挑战性。此外,现有优化方案中的接触性能高度依赖于制造质量,例如,加工公差和叶片磨损引起的不确定齿形误差通常会被忽略。为了解决这些问题,我们提出了一种针对准双曲面齿轮接触性能的稳健优化方法。建立的有限元/接触力学模型考虑了高斯分布模型下的随机齿形误差。非线性约束被纳入其中,以避免加载条件下的边缘接触以及误差导致的齿面干涉。这种方法保证了可行的解空间,并通过独立的识别模型降低了优化的复杂性。最优解的识别模型可以灵活选择参数,同时保持齿深度。这一非确定性问题的优化基于模式搜索法。帕累托前沿和设计灵敏度分析证明了所提优化方法的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust optimization of hypoid gear contact performance considering tooth form error: Design sensitivity and Pareto front

Optimization of hypoid gear contact performance is challenging due to its nonconvex nature and the handling of non-linear constraints involving complex gear contact behavior. In addition, the contact performance in the existing optimization schemes is highly reliant on the manufacturing quality, for example, the uncertain tooth form errors induced by machining tolerances and blade wear are usually ignored. To tackle these problems, a robust optimization methodology is proposed for hypoid gear contact performance. A finite element/contact mechanics model is established, which considers the stochastic tooth form errors following a Gaussian distribution model. The non-linear constraints are incorporated to avoid edge contact under loaded conditions, and tooth surface interference due to error. This methodology guarantees the feasible solution space and reduces the optimization complexity by the independent identification model. The identification model of the optimal solution is flexible in the parameter selection while keeping tooth depth. This non-deterministic problem is optimized based on the pattern search method. The Pareto front and design sensitivity analysis demonstrate the effectiveness and robustness of the proposed optimization methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信