{"title":"拓扑和容量在主频某些界限中的作用","authors":"Francesco Bozzola, Lorenzo Brasco","doi":"10.1007/s12220-024-01742-2","DOIUrl":null,"url":null,"abstract":"<p>We prove a lower bound on the sharp Poincaré–Sobolev embedding constants for general open sets, in terms of their inradius. We consider the following two situations: planar sets with given topology; open sets in any dimension, under the restriction that points are not removable sets. In the first case, we get an estimate which optimally depends on the topology of the sets, thus generalizing a result by Croke, Osserman and Taylor, originally devised for the first eigenvalue of the Dirichlet–Laplacian. We also consider some limit situations, like the sharp Moser–Trudinger constant and the Cheeger constant. As a byproduct of our discussion, we also obtain a Buser-type inequality for open subsets of the plane, with given topology. An interesting problem on the sharp constant for this inequality is presented.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Topology and Capacity in Some Bounds for Principal Frequencies\",\"authors\":\"Francesco Bozzola, Lorenzo Brasco\",\"doi\":\"10.1007/s12220-024-01742-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a lower bound on the sharp Poincaré–Sobolev embedding constants for general open sets, in terms of their inradius. We consider the following two situations: planar sets with given topology; open sets in any dimension, under the restriction that points are not removable sets. In the first case, we get an estimate which optimally depends on the topology of the sets, thus generalizing a result by Croke, Osserman and Taylor, originally devised for the first eigenvalue of the Dirichlet–Laplacian. We also consider some limit situations, like the sharp Moser–Trudinger constant and the Cheeger constant. As a byproduct of our discussion, we also obtain a Buser-type inequality for open subsets of the plane, with given topology. An interesting problem on the sharp constant for this inequality is presented.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01742-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01742-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Topology and Capacity in Some Bounds for Principal Frequencies
We prove a lower bound on the sharp Poincaré–Sobolev embedding constants for general open sets, in terms of their inradius. We consider the following two situations: planar sets with given topology; open sets in any dimension, under the restriction that points are not removable sets. In the first case, we get an estimate which optimally depends on the topology of the sets, thus generalizing a result by Croke, Osserman and Taylor, originally devised for the first eigenvalue of the Dirichlet–Laplacian. We also consider some limit situations, like the sharp Moser–Trudinger constant and the Cheeger constant. As a byproduct of our discussion, we also obtain a Buser-type inequality for open subsets of the plane, with given topology. An interesting problem on the sharp constant for this inequality is presented.