拓扑和容量在主频某些界限中的作用

Francesco Bozzola, Lorenzo Brasco
{"title":"拓扑和容量在主频某些界限中的作用","authors":"Francesco Bozzola, Lorenzo Brasco","doi":"10.1007/s12220-024-01742-2","DOIUrl":null,"url":null,"abstract":"<p>We prove a lower bound on the sharp Poincaré–Sobolev embedding constants for general open sets, in terms of their inradius. We consider the following two situations: planar sets with given topology; open sets in any dimension, under the restriction that points are not removable sets. In the first case, we get an estimate which optimally depends on the topology of the sets, thus generalizing a result by Croke, Osserman and Taylor, originally devised for the first eigenvalue of the Dirichlet–Laplacian. We also consider some limit situations, like the sharp Moser–Trudinger constant and the Cheeger constant. As a byproduct of our discussion, we also obtain a Buser-type inequality for open subsets of the plane, with given topology. An interesting problem on the sharp constant for this inequality is presented.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Topology and Capacity in Some Bounds for Principal Frequencies\",\"authors\":\"Francesco Bozzola, Lorenzo Brasco\",\"doi\":\"10.1007/s12220-024-01742-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a lower bound on the sharp Poincaré–Sobolev embedding constants for general open sets, in terms of their inradius. We consider the following two situations: planar sets with given topology; open sets in any dimension, under the restriction that points are not removable sets. In the first case, we get an estimate which optimally depends on the topology of the sets, thus generalizing a result by Croke, Osserman and Taylor, originally devised for the first eigenvalue of the Dirichlet–Laplacian. We also consider some limit situations, like the sharp Moser–Trudinger constant and the Cheeger constant. As a byproduct of our discussion, we also obtain a Buser-type inequality for open subsets of the plane, with given topology. An interesting problem on the sharp constant for this inequality is presented.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01742-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01742-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用一般开集的内径证明了尖锐波恩卡莱-索博廖夫嵌入常数的下限。我们考虑了以下两种情况:具有给定拓扑结构的平面集;在点不是可移动集的限制下,任意维度的开放集。在第一种情况下,我们得到的估计值最佳地依赖于集合的拓扑结构,从而推广了克罗克、奥斯曼和泰勒最初为狄利克特-拉普拉奇的第一个特征值设计的结果。我们还考虑了一些极限情况,如尖锐的莫瑟-特鲁丁格常数和切格常数。作为讨论的副产品,我们还得到了一个给定拓扑的平面开放子集的 Buser 型不等式。我们还提出了一个关于这个不等式的尖锐常数的有趣问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Role of Topology and Capacity in Some Bounds for Principal Frequencies

The Role of Topology and Capacity in Some Bounds for Principal Frequencies

We prove a lower bound on the sharp Poincaré–Sobolev embedding constants for general open sets, in terms of their inradius. We consider the following two situations: planar sets with given topology; open sets in any dimension, under the restriction that points are not removable sets. In the first case, we get an estimate which optimally depends on the topology of the sets, thus generalizing a result by Croke, Osserman and Taylor, originally devised for the first eigenvalue of the Dirichlet–Laplacian. We also consider some limit situations, like the sharp Moser–Trudinger constant and the Cheeger constant. As a byproduct of our discussion, we also obtain a Buser-type inequality for open subsets of the plane, with given topology. An interesting problem on the sharp constant for this inequality is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信