ddX:从小分子到蛋白质的可极化连续溶解

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Michele Nottoli, Michael F. Herbst, Aleksandr Mikhalev, Abhinav Jha, Filippo Lipparini, Benjamin Stamm
{"title":"ddX:从小分子到蛋白质的可极化连续溶解","authors":"Michele Nottoli,&nbsp;Michael F. Herbst,&nbsp;Aleksandr Mikhalev,&nbsp;Abhinav Jha,&nbsp;Filippo Lipparini,&nbsp;Benjamin Stamm","doi":"10.1002/wcms.1726","DOIUrl":null,"url":null,"abstract":"<p>Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics, though typically with different requirements for the numerical methods. However, the recent trend of multiscale modeling can be expected to blur field-specific differences. In this regard, numerical methods based on domain decomposition (dd) have been demonstrated to be sufficiently flexible to be applied all across these levels of theory while remaining systematically accurate and efficient. In this contribution, we present <span>ddX</span>, an open-source implementation of dd-methods for various solvation models, which features a uniform interface with classical as well as quantum descriptions of the solute, or any hybrid versions thereof. We explain the key concepts of the library design and its application program interface, and demonstrate the use of <span>ddX</span> for integrating into standard chemistry packages. Numerical tests illustrate the performance of <span>ddX</span> and its interfaces.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1726","citationCount":"0","resultStr":"{\"title\":\"ddX: Polarizable continuum solvation from small molecules to proteins\",\"authors\":\"Michele Nottoli,&nbsp;Michael F. Herbst,&nbsp;Aleksandr Mikhalev,&nbsp;Abhinav Jha,&nbsp;Filippo Lipparini,&nbsp;Benjamin Stamm\",\"doi\":\"10.1002/wcms.1726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics, though typically with different requirements for the numerical methods. However, the recent trend of multiscale modeling can be expected to blur field-specific differences. In this regard, numerical methods based on domain decomposition (dd) have been demonstrated to be sufficiently flexible to be applied all across these levels of theory while remaining systematically accurate and efficient. In this contribution, we present <span>ddX</span>, an open-source implementation of dd-methods for various solvation models, which features a uniform interface with classical as well as quantum descriptions of the solute, or any hybrid versions thereof. We explain the key concepts of the library design and its application program interface, and demonstrate the use of <span>ddX</span> for integrating into standard chemistry packages. Numerical tests illustrate the performance of <span>ddX</span> and its interfaces.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1726\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1726\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1726","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可极化连续溶解模型在量子化学和生物物理学中都很流行,但对数值方法的要求通常不同。然而,最近的多尺度建模趋势有望模糊特定领域的差异。在这方面,基于领域分解(dd)的数值方法已被证明具有足够的灵活性,可应用于所有这些理论层面,同时保持系统的准确性和高效性。在这篇论文中,我们介绍了 ddX,它是针对各种溶解模型的 dd 方法的开源实现,具有与溶质的经典和量子描述或其任何混合版本的统一接口。我们解释了库设计的关键概念及其应用程序接口,并演示了如何将 ddX 集成到标准化学软件包中。数值测试说明了 ddX 及其接口的性能:软件 > 量子化学软件 > 模拟方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ddX: Polarizable continuum solvation from small molecules to proteins

ddX: Polarizable continuum solvation from small molecules to proteins

ddX: Polarizable continuum solvation from small molecules to proteins

Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics, though typically with different requirements for the numerical methods. However, the recent trend of multiscale modeling can be expected to blur field-specific differences. In this regard, numerical methods based on domain decomposition (dd) have been demonstrated to be sufficiently flexible to be applied all across these levels of theory while remaining systematically accurate and efficient. In this contribution, we present ddX, an open-source implementation of dd-methods for various solvation models, which features a uniform interface with classical as well as quantum descriptions of the solute, or any hybrid versions thereof. We explain the key concepts of the library design and its application program interface, and demonstrate the use of ddX for integrating into standard chemistry packages. Numerical tests illustrate the performance of ddX and its interfaces.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信