利用谷歌地球引擎评估全球陆地数据同化系统得出的半干旱地区两个不同深度的每日土壤温度

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Abolghasem Akbari, Majid Rajabi Jaghargh, Azizan Abu Samah, Jonathan Peter Cox, Mojtaba Gholamzadeh, Alireza Araghi, Patricia M. Saco, Khabat Khosravi
{"title":"利用谷歌地球引擎评估全球陆地数据同化系统得出的半干旱地区两个不同深度的每日土壤温度","authors":"Abolghasem Akbari,&nbsp;Majid Rajabi Jaghargh,&nbsp;Azizan Abu Samah,&nbsp;Jonathan Peter Cox,&nbsp;Mojtaba Gholamzadeh,&nbsp;Alireza Araghi,&nbsp;Patricia M. Saco,&nbsp;Khabat Khosravi","doi":"10.1002/met.2221","DOIUrl":null,"url":null,"abstract":"<p>The Google Earth Engine (GEE) was used to investigate the performance of the Global Land Data Assimilation System (GLDAS) soil temperature (ST) data against observed ST from 13 synoptic stations over a semiarid region in Iran. Three-hourly ST data were collected and analyzed in two depths (0–10 cm; 40–100 cm) and 5 years. In each depth, GLDAS-Noah ST data were evaluated for daily minimum, maximum, and average ST (i.e., <i>T</i><sub>min</sub>, <i>T</i><sub>max</sub>, and <i>T</i><sub>avg</sub>). Based on the correlation coefficient, Kling–Gupta Efficiency, and Nash–Sutcliffe Efficiency the overall performance of the GLDAS-Noah is 0.96, 0.66, and 0.79 for <i>T</i><sub>min</sub>; 0.97, 0.84, and 0.89 for <i>T</i><sub>avg</sub>; and 0.95, 0.89, and 0.89 for <i>T</i><sub>max</sub>, respectively in the first layer. Likewise, 0.97, 0.85, and 0.86 for <i>T</i><sub>min</sub>; 0.97, 0.77, and 0.80 for <i>T</i><sub>avg</sub>; and 0.97, 0.69, and 0.69 for <i>T</i><sub>max</sub> are obtained in the second layer. However, there is a significant negative bias which tends to underestimate ST in the two investigated layers, given by an average bias over all the stations analyzed of −24%, −12%, and −5% for <i>T</i><sub>min</sub>, <i>T</i><sub>avg</sub>, and <i>T</i><sub>max</sub> in the first layer, and average bias of −8%, −13%, and −17% for <i>T</i><sub>min</sub>, <i>T</i><sub>avg</sub>, and <i>T</i><sub>max</sub> in the second layer. This study reveals that GLDAS-Noah-derived ST can be used in arid regions where little or no observation data is available. Moreover, GEE performed as an advanced geospatial processing tool in regional scale analysis of ST in different layers.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2221","citationCount":"0","resultStr":"{\"title\":\"Utilization of the Google Earth Engine for the evaluation of daily soil temperature derived from Global Land Data Assimilation System in two different depths over a semiarid region\",\"authors\":\"Abolghasem Akbari,&nbsp;Majid Rajabi Jaghargh,&nbsp;Azizan Abu Samah,&nbsp;Jonathan Peter Cox,&nbsp;Mojtaba Gholamzadeh,&nbsp;Alireza Araghi,&nbsp;Patricia M. Saco,&nbsp;Khabat Khosravi\",\"doi\":\"10.1002/met.2221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Google Earth Engine (GEE) was used to investigate the performance of the Global Land Data Assimilation System (GLDAS) soil temperature (ST) data against observed ST from 13 synoptic stations over a semiarid region in Iran. Three-hourly ST data were collected and analyzed in two depths (0–10 cm; 40–100 cm) and 5 years. In each depth, GLDAS-Noah ST data were evaluated for daily minimum, maximum, and average ST (i.e., <i>T</i><sub>min</sub>, <i>T</i><sub>max</sub>, and <i>T</i><sub>avg</sub>). Based on the correlation coefficient, Kling–Gupta Efficiency, and Nash–Sutcliffe Efficiency the overall performance of the GLDAS-Noah is 0.96, 0.66, and 0.79 for <i>T</i><sub>min</sub>; 0.97, 0.84, and 0.89 for <i>T</i><sub>avg</sub>; and 0.95, 0.89, and 0.89 for <i>T</i><sub>max</sub>, respectively in the first layer. Likewise, 0.97, 0.85, and 0.86 for <i>T</i><sub>min</sub>; 0.97, 0.77, and 0.80 for <i>T</i><sub>avg</sub>; and 0.97, 0.69, and 0.69 for <i>T</i><sub>max</sub> are obtained in the second layer. However, there is a significant negative bias which tends to underestimate ST in the two investigated layers, given by an average bias over all the stations analyzed of −24%, −12%, and −5% for <i>T</i><sub>min</sub>, <i>T</i><sub>avg</sub>, and <i>T</i><sub>max</sub> in the first layer, and average bias of −8%, −13%, and −17% for <i>T</i><sub>min</sub>, <i>T</i><sub>avg</sub>, and <i>T</i><sub>max</sub> in the second layer. This study reveals that GLDAS-Noah-derived ST can be used in arid regions where little or no observation data is available. Moreover, GEE performed as an advanced geospatial processing tool in regional scale analysis of ST in different layers.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2221\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.2221\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2221","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用谷歌地球引擎(GEE)研究了全球陆地数据同化系统(GLDAS)土壤温度(ST)数据与伊朗半干旱地区 13 个同步站观测到的土壤温度(ST)数据的对比性能。收集并分析了两个深度(0-10 厘米;40-100 厘米)和 5 年的每三小时 ST 数据。对每个深度的 GLDAS-Noah ST 数据进行了日最小、最大和平均 ST(即 Tmin、Tmax 和 Tavg)评估。根据相关系数、Kling-Gupta 效率和 Nash-Sutcliffe 效率,GLDAS-Noah 的总体性能在第一层的 Tmin 分别为 0.96、0.66 和 0.79;Tavg 分别为 0.97、0.84 和 0.89;Tmax 分别为 0.95、0.89 和 0.89。同样,在第二层,Tmin 分别为 0.97、0.85 和 0.86;Tavg 分别为 0.97、0.77 和 0.80;Tmax 分别为 0.97、0.69 和 0.69。然而,在两个调查层中存在明显的负偏差,往往低估了 ST 值,第一层中 Tmin、Tavg 和 Tmax 的所有分析站平均偏差分别为-24%、-12%和-5%,第二层中 Tmin、Tavg 和 Tmax 的平均偏差分别为-8%、-13%和-17%。这项研究表明,GLDAS-Noah 导出的 ST 可用于观测数据较少或没有观测数据的干旱地区。此外,在对不同层的 ST 进行区域尺度分析时,GEE 是一种先进的地理空间处理工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilization of the Google Earth Engine for the evaluation of daily soil temperature derived from Global Land Data Assimilation System in two different depths over a semiarid region

Utilization of the Google Earth Engine for the evaluation of daily soil temperature derived from Global Land Data Assimilation System in two different depths over a semiarid region

The Google Earth Engine (GEE) was used to investigate the performance of the Global Land Data Assimilation System (GLDAS) soil temperature (ST) data against observed ST from 13 synoptic stations over a semiarid region in Iran. Three-hourly ST data were collected and analyzed in two depths (0–10 cm; 40–100 cm) and 5 years. In each depth, GLDAS-Noah ST data were evaluated for daily minimum, maximum, and average ST (i.e., Tmin, Tmax, and Tavg). Based on the correlation coefficient, Kling–Gupta Efficiency, and Nash–Sutcliffe Efficiency the overall performance of the GLDAS-Noah is 0.96, 0.66, and 0.79 for Tmin; 0.97, 0.84, and 0.89 for Tavg; and 0.95, 0.89, and 0.89 for Tmax, respectively in the first layer. Likewise, 0.97, 0.85, and 0.86 for Tmin; 0.97, 0.77, and 0.80 for Tavg; and 0.97, 0.69, and 0.69 for Tmax are obtained in the second layer. However, there is a significant negative bias which tends to underestimate ST in the two investigated layers, given by an average bias over all the stations analyzed of −24%, −12%, and −5% for Tmin, Tavg, and Tmax in the first layer, and average bias of −8%, −13%, and −17% for Tmin, Tavg, and Tmax in the second layer. This study reveals that GLDAS-Noah-derived ST can be used in arid regions where little or no observation data is available. Moreover, GEE performed as an advanced geospatial processing tool in regional scale analysis of ST in different layers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信