Marcelo M. Cavalcanti , Valéria N. Domingos Cavalcanti , José Guilherme Simion Antunes
{"title":"具有任意增长非线性的紧凑流形上波方程的存在性和渐近稳定性","authors":"Marcelo M. Cavalcanti , Valéria N. Domingos Cavalcanti , José Guilherme Simion Antunes","doi":"10.1016/j.na.2024.113620","DOIUrl":null,"url":null,"abstract":"<div><p>We study the wellposedness, stabilization and blow up of solutions of the wave equation with nonlinearities of arbitrary growth and locally distributed nonlinear dissipation posed in a 2-dimensional compact Riemannian manifold <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></math></span> without boundary. Differently of the previous literature we give a different proof based on the truncation of the original problem and passage to the limit in order to obtain in one shot, the energy identity as well as the Observability Inequality, which are the essential ingredients to obtain uniform decay rates of the energy. One advantage of our proof, even in the case of subcritical, critical or super critical growth, is that the decay rate is independent of the nonlinearity. We can also treat the focusing case for those solutions with energy less than <span><math><mi>d</mi></math></span> of the ground state, where <span><math><mi>d</mi></math></span> is the level of the Mountain Pass Theorem.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and asymptotic stability for the wave equation on compact manifolds with nonlinearities of arbitrary growth\",\"authors\":\"Marcelo M. Cavalcanti , Valéria N. Domingos Cavalcanti , José Guilherme Simion Antunes\",\"doi\":\"10.1016/j.na.2024.113620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the wellposedness, stabilization and blow up of solutions of the wave equation with nonlinearities of arbitrary growth and locally distributed nonlinear dissipation posed in a 2-dimensional compact Riemannian manifold <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></math></span> without boundary. Differently of the previous literature we give a different proof based on the truncation of the original problem and passage to the limit in order to obtain in one shot, the energy identity as well as the Observability Inequality, which are the essential ingredients to obtain uniform decay rates of the energy. One advantage of our proof, even in the case of subcritical, critical or super critical growth, is that the decay rate is independent of the nonlinearity. We can also treat the focusing case for those solutions with energy less than <span><math><mi>d</mi></math></span> of the ground state, where <span><math><mi>d</mi></math></span> is the level of the Mountain Pass Theorem.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001391\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001391","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Existence and asymptotic stability for the wave equation on compact manifolds with nonlinearities of arbitrary growth
We study the wellposedness, stabilization and blow up of solutions of the wave equation with nonlinearities of arbitrary growth and locally distributed nonlinear dissipation posed in a 2-dimensional compact Riemannian manifold without boundary. Differently of the previous literature we give a different proof based on the truncation of the original problem and passage to the limit in order to obtain in one shot, the energy identity as well as the Observability Inequality, which are the essential ingredients to obtain uniform decay rates of the energy. One advantage of our proof, even in the case of subcritical, critical or super critical growth, is that the decay rate is independent of the nonlinearity. We can also treat the focusing case for those solutions with energy less than of the ground state, where is the level of the Mountain Pass Theorem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.