利用卷积神经网络帮助乳房X光片诊断乳腺癌

Rocío García-Mojón, Fernando Martín-Rodríguez, Mónica Fernández-Barciela
{"title":"利用卷积神经网络帮助乳房X光片诊断乳腺癌","authors":"Rocío García-Mojón, Fernando Martín-Rodríguez, Mónica Fernández-Barciela","doi":"10.1101/2024.07.31.24311257","DOIUrl":null,"url":null,"abstract":"In this paper a study about breast cancer detection is presented. Mammography images in DICOM format are processed using Convolutional Neural Networks (CNNs) to get a pre-diagnosis. Of course, this preliminary result needs to be checked by a trained radiologist. CNNs are trained and checked using a big database that is publicly available. Standard measurements for success are computed (accuracy, precision, recall) obtaining outstanding results better than other examples from the literature.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helping Breast Cancer Diagnosis on Mammographies using Convolutional Neural Networks\",\"authors\":\"Rocío García-Mojón, Fernando Martín-Rodríguez, Mónica Fernández-Barciela\",\"doi\":\"10.1101/2024.07.31.24311257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a study about breast cancer detection is presented. Mammography images in DICOM format are processed using Convolutional Neural Networks (CNNs) to get a pre-diagnosis. Of course, this preliminary result needs to be checked by a trained radiologist. CNNs are trained and checked using a big database that is publicly available. Standard measurements for success are computed (accuracy, precision, recall) obtaining outstanding results better than other examples from the literature.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.31.24311257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一项关于乳腺癌检测的研究。使用卷积神经网络 (CNN) 处理 DICOM 格式的乳腺 X 射线图像,以获得预诊断结果。当然,这一初步结果需要由训练有素的放射科医生进行检查。CNN 通过一个公开的大型数据库进行训练和检查。通过计算成功的标准衡量标准(准确度、精确度、召回率),获得了优于其他文献实例的出色结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Helping Breast Cancer Diagnosis on Mammographies using Convolutional Neural Networks
In this paper a study about breast cancer detection is presented. Mammography images in DICOM format are processed using Convolutional Neural Networks (CNNs) to get a pre-diagnosis. Of course, this preliminary result needs to be checked by a trained radiologist. CNNs are trained and checked using a big database that is publicly available. Standard measurements for success are computed (accuracy, precision, recall) obtaining outstanding results better than other examples from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信