Rocío García-Mojón, Fernando Martín-Rodríguez, Mónica Fernández-Barciela
{"title":"利用卷积神经网络帮助乳房X光片诊断乳腺癌","authors":"Rocío García-Mojón, Fernando Martín-Rodríguez, Mónica Fernández-Barciela","doi":"10.1101/2024.07.31.24311257","DOIUrl":null,"url":null,"abstract":"In this paper a study about breast cancer detection is presented. Mammography images in DICOM format are processed using Convolutional Neural Networks (CNNs) to get a pre-diagnosis. Of course, this preliminary result needs to be checked by a trained radiologist. CNNs are trained and checked using a big database that is publicly available. Standard measurements for success are computed (accuracy, precision, recall) obtaining outstanding results better than other examples from the literature.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helping Breast Cancer Diagnosis on Mammographies using Convolutional Neural Networks\",\"authors\":\"Rocío García-Mojón, Fernando Martín-Rodríguez, Mónica Fernández-Barciela\",\"doi\":\"10.1101/2024.07.31.24311257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a study about breast cancer detection is presented. Mammography images in DICOM format are processed using Convolutional Neural Networks (CNNs) to get a pre-diagnosis. Of course, this preliminary result needs to be checked by a trained radiologist. CNNs are trained and checked using a big database that is publicly available. Standard measurements for success are computed (accuracy, precision, recall) obtaining outstanding results better than other examples from the literature.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.31.24311257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一项关于乳腺癌检测的研究。使用卷积神经网络 (CNN) 处理 DICOM 格式的乳腺 X 射线图像,以获得预诊断结果。当然,这一初步结果需要由训练有素的放射科医生进行检查。CNN 通过一个公开的大型数据库进行训练和检查。通过计算成功的标准衡量标准(准确度、精确度、召回率),获得了优于其他文献实例的出色结果。
Helping Breast Cancer Diagnosis on Mammographies using Convolutional Neural Networks
In this paper a study about breast cancer detection is presented. Mammography images in DICOM format are processed using Convolutional Neural Networks (CNNs) to get a pre-diagnosis. Of course, this preliminary result needs to be checked by a trained radiologist. CNNs are trained and checked using a big database that is publicly available. Standard measurements for success are computed (accuracy, precision, recall) obtaining outstanding results better than other examples from the literature.