无指向同调类别的代数 $K_0$

Felix Küng
{"title":"无指向同调类别的代数 $K_0$","authors":"Felix Küng","doi":"arxiv-2407.20911","DOIUrl":null,"url":null,"abstract":"We introduce the notion of Grothendieck heaps for unpointed Waldhausen\ncategories and unpointed stable $\\infty$-categories. This allows an extension\nof the studies of $\\mathrm{K}_0$ to the homotopy category of unpointed\ntopological spaces.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic $K_0$ for unpointed homotopy Categories\",\"authors\":\"Felix Küng\",\"doi\":\"arxiv-2407.20911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of Grothendieck heaps for unpointed Waldhausen\\ncategories and unpointed stable $\\\\infty$-categories. This allows an extension\\nof the studies of $\\\\mathrm{K}_0$ to the homotopy category of unpointed\\ntopological spaces.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为无指向的瓦尔德豪斯范畴和无指向的稳定$\infty$范畴引入了格罗thendieck堆的概念。这使得 $\mathrm{K}_0$ 的研究可以扩展到无点拓扑空间的同调范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic $K_0$ for unpointed homotopy Categories
We introduce the notion of Grothendieck heaps for unpointed Waldhausen categories and unpointed stable $\infty$-categories. This allows an extension of the studies of $\mathrm{K}_0$ to the homotopy category of unpointed topological spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信