拓扑量子场论与同调共线性

IF 0.6 4区 数学 Q3 MATHEMATICS
Fiona Torzewska
{"title":"拓扑量子场论与同调共线性","authors":"Fiona Torzewska","doi":"10.1007/s10485-024-09776-x","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a category <span>\\({\\textrm{HomCob}}\\)</span> whose objects are <i>homotopically 1-finitely generated</i> topological spaces, and whose morphisms are <i>cofibrant cospans</i>. Given a manifold submanifold pair (<i>M</i>, <i>A</i>), we prove that there exists functors into <span>\\({\\textrm{HomCob}}\\)</span> from the full subgroupoid of the mapping class groupoid <span>\\(\\textrm{MCG}_{M}^{A}\\)</span>, and from the full subgroupoid of the motion groupoid <span>\\(\\textrm{Mot}_{M}^{A}\\)</span>, whose objects are homotopically 1-finitely generated. We also construct a family of functors <span>\\({\\textsf{Z}}_G:{\\textrm{HomCob}}\\rightarrow {\\textbf{Vect}}\\)</span>, one for each finite group <i>G</i>. These generalise topological quantum field theories previously constructed by Yetter, and an untwisted version of Dijkgraaf–Witten. Given a space <i>X</i>, we prove that <span>\\({\\textsf{Z}}_G(X)\\)</span> can be expressed as the <span>\\({\\mathbb {C}}\\)</span>-vector space with basis natural transformation classes of maps from <span>\\(\\pi (X,X_0)\\)</span> to <i>G</i> for some finite representative set of points <span>\\(X_0\\subset X\\)</span>, demonstrating that <span>\\({\\textsf{Z}}_G\\)</span> is explicitly calculable.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09776-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Topological Quantum Field Theories and Homotopy Cobordisms\",\"authors\":\"Fiona Torzewska\",\"doi\":\"10.1007/s10485-024-09776-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a category <span>\\\\({\\\\textrm{HomCob}}\\\\)</span> whose objects are <i>homotopically 1-finitely generated</i> topological spaces, and whose morphisms are <i>cofibrant cospans</i>. Given a manifold submanifold pair (<i>M</i>, <i>A</i>), we prove that there exists functors into <span>\\\\({\\\\textrm{HomCob}}\\\\)</span> from the full subgroupoid of the mapping class groupoid <span>\\\\(\\\\textrm{MCG}_{M}^{A}\\\\)</span>, and from the full subgroupoid of the motion groupoid <span>\\\\(\\\\textrm{Mot}_{M}^{A}\\\\)</span>, whose objects are homotopically 1-finitely generated. We also construct a family of functors <span>\\\\({\\\\textsf{Z}}_G:{\\\\textrm{HomCob}}\\\\rightarrow {\\\\textbf{Vect}}\\\\)</span>, one for each finite group <i>G</i>. These generalise topological quantum field theories previously constructed by Yetter, and an untwisted version of Dijkgraaf–Witten. Given a space <i>X</i>, we prove that <span>\\\\({\\\\textsf{Z}}_G(X)\\\\)</span> can be expressed as the <span>\\\\({\\\\mathbb {C}}\\\\)</span>-vector space with basis natural transformation classes of maps from <span>\\\\(\\\\pi (X,X_0)\\\\)</span> to <i>G</i> for some finite representative set of points <span>\\\\(X_0\\\\subset X\\\\)</span>, demonstrating that <span>\\\\({\\\\textsf{Z}}_G\\\\)</span> is explicitly calculable.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-024-09776-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09776-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09776-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个范畴 (\({\textrm{HomCob}}\),它的对象是同向 1 无限生成的拓扑空间,而它的形态是共纤空间。给定一对流形子流形(M, A),我们证明存在从映射类群的全子群进入\({\textrm{HomCob}}\)的函数,以及从运动群的全子群进入\(\textrm{Mot}_{M}^{A}\)的函数,它们的对象都是同向无限生成的。我们还构造了一个函子族({\textsf{Z}}_G:{\textrm{HomCob}}\rightarrow {\textbf{Vect}}\),每个有限群 G 有一个函子族。这些函子族概括了叶特尔(Yetter)先前构造的拓扑量子场论,以及迪克格拉夫-维滕(Dijkgraaf-Witten)的非扭曲版本。给定一个空间 X,我们证明了 \({\textsf{Z}}_G(X)\) 可以表达为 \({\mathbb {C}}\)-向量空间,对于某个有限代表点集 \(X_0\subset X\) ,从 \(\pi (X,X_0)\) 到 G 的映射的基自然变换类,证明了 \({\textsf{Z}}_G\) 是显式可计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topological Quantum Field Theories and Homotopy Cobordisms

Topological Quantum Field Theories and Homotopy Cobordisms

We construct a category \({\textrm{HomCob}}\) whose objects are homotopically 1-finitely generated topological spaces, and whose morphisms are cofibrant cospans. Given a manifold submanifold pair (MA), we prove that there exists functors into \({\textrm{HomCob}}\) from the full subgroupoid of the mapping class groupoid \(\textrm{MCG}_{M}^{A}\), and from the full subgroupoid of the motion groupoid \(\textrm{Mot}_{M}^{A}\), whose objects are homotopically 1-finitely generated. We also construct a family of functors \({\textsf{Z}}_G:{\textrm{HomCob}}\rightarrow {\textbf{Vect}}\), one for each finite group G. These generalise topological quantum field theories previously constructed by Yetter, and an untwisted version of Dijkgraaf–Witten. Given a space X, we prove that \({\textsf{Z}}_G(X)\) can be expressed as the \({\mathbb {C}}\)-vector space with basis natural transformation classes of maps from \(\pi (X,X_0)\) to G for some finite representative set of points \(X_0\subset X\), demonstrating that \({\textsf{Z}}_G\) is explicitly calculable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信