开源数据质量工具调查:揭示数据质量在实践中的具体体现

Vasileios Papastergios, Anastasios Gounaris
{"title":"开源数据质量工具调查:揭示数据质量在实践中的具体体现","authors":"Vasileios Papastergios, Anastasios Gounaris","doi":"arxiv-2407.18649","DOIUrl":null,"url":null,"abstract":"Data Quality (DQ) describes the degree to which data characteristics meet\nrequirements and are fit for use by humans and/or systems. There are several\naspects in which DQ can be measured, called DQ dimensions (i.e. accuracy,\ncompleteness, consistency, etc.), also referred to as characteristics in\nliterature. ISO/IEC 25012 Standard defines a data quality model with fifteen\nsuch dimensions, setting the requirements a data product should meet. In this\nshort report, we aim to bridge the gap between lower-level functionalities\noffered by DQ tools and higher-level dimensions in a systematic manner,\nrevealing the many-to-many relationships between them. To this end, we examine\n6 open-source DQ tools and we emphasize on providing a mapping between the\nfunctionalities they offer and the DQ dimensions, as defined by the ISO\nstandard. Wherever applicable, we also provide insights into the software\nengineering details that tools leverage, in order to address DQ challenges.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of open-source data quality tools: shedding light on the materialization of data quality dimensions in practice\",\"authors\":\"Vasileios Papastergios, Anastasios Gounaris\",\"doi\":\"arxiv-2407.18649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Quality (DQ) describes the degree to which data characteristics meet\\nrequirements and are fit for use by humans and/or systems. There are several\\naspects in which DQ can be measured, called DQ dimensions (i.e. accuracy,\\ncompleteness, consistency, etc.), also referred to as characteristics in\\nliterature. ISO/IEC 25012 Standard defines a data quality model with fifteen\\nsuch dimensions, setting the requirements a data product should meet. In this\\nshort report, we aim to bridge the gap between lower-level functionalities\\noffered by DQ tools and higher-level dimensions in a systematic manner,\\nrevealing the many-to-many relationships between them. To this end, we examine\\n6 open-source DQ tools and we emphasize on providing a mapping between the\\nfunctionalities they offer and the DQ dimensions, as defined by the ISO\\nstandard. Wherever applicable, we also provide insights into the software\\nengineering details that tools leverage, in order to address DQ challenges.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据质量(DQ)描述了数据特征满足要求并适合人类和/或系统使用的程度。有几个方面可以衡量 DQ,称为 DQ 维度(即准确性、完整性、一致性等),在文献中也称为特征。ISO/IEC 25012 标准定义了一个包含 15 个维度的数据质量模型,规定了数据产品应满足的要求。在这份简短的报告中,我们旨在系统地弥合数据质量工具提供的低级功能与高级维度之间的差距,揭示它们之间的多对多关系。为此,我们研究了 6 款开源 DQ 工具,并着重提供了这些工具所提供的功能与 ISO 标准所定义的 DQ 维度之间的映射关系。在适用的情况下,我们还深入分析了工具所利用的软件工程细节,以应对 DQ 挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of open-source data quality tools: shedding light on the materialization of data quality dimensions in practice
Data Quality (DQ) describes the degree to which data characteristics meet requirements and are fit for use by humans and/or systems. There are several aspects in which DQ can be measured, called DQ dimensions (i.e. accuracy, completeness, consistency, etc.), also referred to as characteristics in literature. ISO/IEC 25012 Standard defines a data quality model with fifteen such dimensions, setting the requirements a data product should meet. In this short report, we aim to bridge the gap between lower-level functionalities offered by DQ tools and higher-level dimensions in a systematic manner, revealing the many-to-many relationships between them. To this end, we examine 6 open-source DQ tools and we emphasize on providing a mapping between the functionalities they offer and the DQ dimensions, as defined by the ISO standard. Wherever applicable, we also provide insights into the software engineering details that tools leverage, in order to address DQ challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信