MEVDT:基于事件的多模式车辆检测与跟踪数据集

Zaid A. El Shair, Samir A. Rawashdeh
{"title":"MEVDT:基于事件的多模式车辆检测与跟踪数据集","authors":"Zaid A. El Shair, Samir A. Rawashdeh","doi":"arxiv-2407.20446","DOIUrl":null,"url":null,"abstract":"In this data article, we introduce the Multi-Modal Event-based Vehicle\nDetection and Tracking (MEVDT) dataset. This dataset provides a synchronized\nstream of event data and grayscale images of traffic scenes, captured using the\nDynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera.\nMEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M\nevents, 10k object labels, and 85 unique object tracking trajectories.\nAdditionally, MEVDT includes manually annotated ground truth labels\n$\\unicode{x2014}$ consisting of object classifications, pixel-precise bounding\nboxes, and unique object IDs $\\unicode{x2014}$ which are provided at a labeling\nfrequency of 24 Hz. Designed to advance the research in the domain of\nevent-based vision, MEVDT aims to address the critical need for high-quality,\nreal-world annotated datasets that enable the development and evaluation of\nobject detection and tracking algorithms in automotive environments.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEVDT: Multi-Modal Event-Based Vehicle Detection and Tracking Dataset\",\"authors\":\"Zaid A. El Shair, Samir A. Rawashdeh\",\"doi\":\"arxiv-2407.20446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this data article, we introduce the Multi-Modal Event-based Vehicle\\nDetection and Tracking (MEVDT) dataset. This dataset provides a synchronized\\nstream of event data and grayscale images of traffic scenes, captured using the\\nDynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera.\\nMEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M\\nevents, 10k object labels, and 85 unique object tracking trajectories.\\nAdditionally, MEVDT includes manually annotated ground truth labels\\n$\\\\unicode{x2014}$ consisting of object classifications, pixel-precise bounding\\nboxes, and unique object IDs $\\\\unicode{x2014}$ which are provided at a labeling\\nfrequency of 24 Hz. Designed to advance the research in the domain of\\nevent-based vision, MEVDT aims to address the critical need for high-quality,\\nreal-world annotated datasets that enable the development and evaluation of\\nobject detection and tracking algorithms in automotive environments.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇数据文章中,我们将介绍基于多模式事件的车辆检测与跟踪(MEVDT)数据集。MEVDT 包含 63 个多模态序列,其中有约 13k 幅图像、5 个事件、10k 个对象标签和 85 个独特的对象跟踪轨迹。此外,MEVDT 还包含人工标注的地面真实标签(unicode{x2014}$),包括物体分类、像素精确的边界框和独特的物体 ID(unicode{x2014}$),标签频率为 24 Hz。MEVDT 旨在推动基于事件的视觉领域的研究,满足对高质量、真实世界注释数据集的迫切需求,从而开发和评估汽车环境中的物体检测和跟踪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEVDT: Multi-Modal Event-Based Vehicle Detection and Tracking Dataset
In this data article, we introduce the Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT) dataset. This dataset provides a synchronized stream of event data and grayscale images of traffic scenes, captured using the Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera. MEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M events, 10k object labels, and 85 unique object tracking trajectories. Additionally, MEVDT includes manually annotated ground truth labels $\unicode{x2014}$ consisting of object classifications, pixel-precise bounding boxes, and unique object IDs $\unicode{x2014}$ which are provided at a labeling frequency of 24 Hz. Designed to advance the research in the domain of event-based vision, MEVDT aims to address the critical need for high-quality, real-world annotated datasets that enable the development and evaluation of object detection and tracking algorithms in automotive environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信