简单正则表达式上连接正则路径查询的联合有界性

Diego Figueira, S. Krishna, Om Swostik Mishra, Anantha Padmanabha
{"title":"简单正则表达式上连接正则路径查询的联合有界性","authors":"Diego Figueira, S. Krishna, Om Swostik Mishra, Anantha Padmanabha","doi":"arxiv-2407.20782","DOIUrl":null,"url":null,"abstract":"The problem of checking whether a recursive query can be rewritten as query\nwithout recursion is a fundamental reasoning task, known as the boundedness\nproblem. Here we study the boundedness problem for Unions of Conjunctive\nRegular Path Queries (UCRPQs), a navigational query language extensively used\nin ontology and graph database querying. The boundedness problem for UCRPQs is\nExpSpace-complete. Here we focus our analysis on UCRPQs using simple regular\nexpressions, which are of high practical relevance and enjoy a lower reasoning\ncomplexity. We show that the complexity for the boundedness problem for this\nUCRPQs fragment is $\\Pi^P_2$-complete, and that an equivalent bounded query can\nbe produced in polynomial time whenever possible. When the query turns out to\nbe unbounded, we also study the task of finding an equivalent maximally bounded\nquery, which we show to be feasible in $\\Pi^P_2$. As a side result of\nindependent interest stemming from our developments, we study a notion of\nsuccinct finite automata and prove that its membership problem is in NP.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness for Unions of Conjunctive Regular Path Queries over Simple Regular Expressions\",\"authors\":\"Diego Figueira, S. Krishna, Om Swostik Mishra, Anantha Padmanabha\",\"doi\":\"arxiv-2407.20782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of checking whether a recursive query can be rewritten as query\\nwithout recursion is a fundamental reasoning task, known as the boundedness\\nproblem. Here we study the boundedness problem for Unions of Conjunctive\\nRegular Path Queries (UCRPQs), a navigational query language extensively used\\nin ontology and graph database querying. The boundedness problem for UCRPQs is\\nExpSpace-complete. Here we focus our analysis on UCRPQs using simple regular\\nexpressions, which are of high practical relevance and enjoy a lower reasoning\\ncomplexity. We show that the complexity for the boundedness problem for this\\nUCRPQs fragment is $\\\\Pi^P_2$-complete, and that an equivalent bounded query can\\nbe produced in polynomial time whenever possible. When the query turns out to\\nbe unbounded, we also study the task of finding an equivalent maximally bounded\\nquery, which we show to be feasible in $\\\\Pi^P_2$. As a side result of\\nindependent interest stemming from our developments, we study a notion of\\nsuccinct finite automata and prove that its membership problem is in NP.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检查递归查询能否被改写为无递归查询是一个基本的推理任务,被称为有界性问题。在这里,我们研究了关联规则路径查询联盟(UCRPQs)的有界性问题,这是一种在本体和图数据库查询中广泛使用的导航查询语言。UCRPQs的有界性问题是ExpSpace-complete问题。在这里,我们重点分析了使用简单调节表达式的 UCRPQ,这种表达式具有很高的实用性,而且推理复杂度较低。我们证明,这个 UCRPQs 片段的有界性问题的复杂度是 $\Pi^P_2$-完全的,而且只要有可能,就能在多项式时间内产生等价的有界查询。当查询被证明是无界的时候,我们还研究了寻找等价的最大有界查询的任务,我们证明它在 $\Pi^P_2$ 内是可行的。作为与我们的发展相关的一个附带结果,我们研究了一个简洁有限自动机的概念,并证明其成员问题在 NP 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness for Unions of Conjunctive Regular Path Queries over Simple Regular Expressions
The problem of checking whether a recursive query can be rewritten as query without recursion is a fundamental reasoning task, known as the boundedness problem. Here we study the boundedness problem for Unions of Conjunctive Regular Path Queries (UCRPQs), a navigational query language extensively used in ontology and graph database querying. The boundedness problem for UCRPQs is ExpSpace-complete. Here we focus our analysis on UCRPQs using simple regular expressions, which are of high practical relevance and enjoy a lower reasoning complexity. We show that the complexity for the boundedness problem for this UCRPQs fragment is $\Pi^P_2$-complete, and that an equivalent bounded query can be produced in polynomial time whenever possible. When the query turns out to be unbounded, we also study the task of finding an equivalent maximally bounded query, which we show to be feasible in $\Pi^P_2$. As a side result of independent interest stemming from our developments, we study a notion of succinct finite automata and prove that its membership problem is in NP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信