褪黑素通过提高光合作用的保护能力和羧化效率增强两种不同葫芦巴(Trigonella foenum-graecum L.)陆地品系的耐旱性和恢复能力

IF 3.9 3区 生物学 Q1 PLANT SCIENCES
Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli, Maryam Tamadoni-Saray
{"title":"褪黑素通过提高光合作用的保护能力和羧化效率增强两种不同葫芦巴(Trigonella foenum-graecum L.)陆地品系的耐旱性和恢复能力","authors":"Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli, Maryam Tamadoni-Saray","doi":"10.1007/s00344-024-11419-3","DOIUrl":null,"url":null,"abstract":"<p>Drought stress is a major challenge for agriculture and horticulture, limiting crop growth and productivity. Melatonin, a naturally occurring hormone in plants, has been shown to have potential as a stress reliever and growth regulator. Nonetheless, limited research has perused the effect of melatonin on different morpho-physiological and biochemical parameters during prolonged drought stress and subsequent recovery in contrasting landraces. The study aimed to determine whether the exogenous application of melatonin to two contrasting landraces of fenugreek (<i>Trigonella foenum-graecum</i> L.) can improve drought adaptations through drought stress tolerance and/or drought recovery capability and to find the primary parameters associated with this likely improvement in superior treatments by examining photosynthetic pigment contents, chlorophyll fluorescence, gas exchange parameters, and plant growth and water relation indices. Our study revealed that the plants present different responses according to the intensity of drought stress (moderate and severe) and the time elapsed since re-watering (initial and full-recovery). Severe drought stress caused more damage to the drought-sensitive landrace (Shushtar), but at the same time, melatonin treatment was most effective in improving the performance of stressed plants in this landrace. Our findings further demonstrated that the melatonin function is landrace-specific. The drought tolerance response in sensitive landraces was associated with an increase in the chlorophyll content, improved chlorophyll fluorescence and carboxylation efficiency, and cellular membrane protection. This is the first study to report the advantage of melatonin in drought recovery capability, which was attained in tolerant landraces (Varamin) by a decrease in light reactions of photosynthesis and an improvement in dark reactions of photosynthesis and mitochondrial respiration.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin Enhances Drought Tolerance and Recovery Capability in Two Contrasting Fenugreek (Trigonella foenum-graecum L.) Landraces Through Improved Photosynthetic Apparatus Protection and Carboxylation Efficiency\",\"authors\":\"Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli, Maryam Tamadoni-Saray\",\"doi\":\"10.1007/s00344-024-11419-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drought stress is a major challenge for agriculture and horticulture, limiting crop growth and productivity. Melatonin, a naturally occurring hormone in plants, has been shown to have potential as a stress reliever and growth regulator. Nonetheless, limited research has perused the effect of melatonin on different morpho-physiological and biochemical parameters during prolonged drought stress and subsequent recovery in contrasting landraces. The study aimed to determine whether the exogenous application of melatonin to two contrasting landraces of fenugreek (<i>Trigonella foenum-graecum</i> L.) can improve drought adaptations through drought stress tolerance and/or drought recovery capability and to find the primary parameters associated with this likely improvement in superior treatments by examining photosynthetic pigment contents, chlorophyll fluorescence, gas exchange parameters, and plant growth and water relation indices. Our study revealed that the plants present different responses according to the intensity of drought stress (moderate and severe) and the time elapsed since re-watering (initial and full-recovery). Severe drought stress caused more damage to the drought-sensitive landrace (Shushtar), but at the same time, melatonin treatment was most effective in improving the performance of stressed plants in this landrace. Our findings further demonstrated that the melatonin function is landrace-specific. The drought tolerance response in sensitive landraces was associated with an increase in the chlorophyll content, improved chlorophyll fluorescence and carboxylation efficiency, and cellular membrane protection. This is the first study to report the advantage of melatonin in drought recovery capability, which was attained in tolerant landraces (Varamin) by a decrease in light reactions of photosynthesis and an improvement in dark reactions of photosynthesis and mitochondrial respiration.</p>\",\"PeriodicalId\":16842,\"journal\":{\"name\":\"Journal of Plant Growth Regulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00344-024-11419-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11419-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

干旱胁迫是农业和园艺业面临的一大挑战,它限制了作物的生长和产量。褪黑激素是植物体内天然存在的一种激素,已被证明具有缓解胁迫和调节生长的潜力。然而,关于褪黑激素对不同陆地品种在长期干旱胁迫和随后恢复过程中不同形态生理和生化参数的影响的研究却很有限。本研究旨在确定在两个不同的葫芦巴(Trigonella foenum-graecum L.)品种上外源施用褪黑激素是否能通过提高干旱胁迫耐受性和/或干旱恢复能力来改善干旱适应性,并通过检测光合色素含量、叶绿素荧光、气体交换参数以及植物生长和水分关系指数,找出与这种可能的改善有关的主要参数。我们的研究表明,根据干旱胁迫的强度(中度和重度)和重新浇水后的时间(初始和完全恢复),植物表现出不同的反应。严重干旱胁迫对干旱敏感品种(Shushtar)造成的损害更大,但同时褪黑激素处理对改善该品种受胁迫植物的表现最为有效。我们的研究结果进一步证明,褪黑激素的功能具有陆稻的特异性。敏感品种的耐旱反应与叶绿素含量增加、叶绿素荧光和羧化效率提高以及细胞膜保护有关。这是首次报道褪黑激素在干旱恢复能力方面的优势的研究,在耐旱品种(Varamin)中,光合作用的光反应减少,光合作用和线粒体呼吸的暗反应改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Melatonin Enhances Drought Tolerance and Recovery Capability in Two Contrasting Fenugreek (Trigonella foenum-graecum L.) Landraces Through Improved Photosynthetic Apparatus Protection and Carboxylation Efficiency

Melatonin Enhances Drought Tolerance and Recovery Capability in Two Contrasting Fenugreek (Trigonella foenum-graecum L.) Landraces Through Improved Photosynthetic Apparatus Protection and Carboxylation Efficiency

Drought stress is a major challenge for agriculture and horticulture, limiting crop growth and productivity. Melatonin, a naturally occurring hormone in plants, has been shown to have potential as a stress reliever and growth regulator. Nonetheless, limited research has perused the effect of melatonin on different morpho-physiological and biochemical parameters during prolonged drought stress and subsequent recovery in contrasting landraces. The study aimed to determine whether the exogenous application of melatonin to two contrasting landraces of fenugreek (Trigonella foenum-graecum L.) can improve drought adaptations through drought stress tolerance and/or drought recovery capability and to find the primary parameters associated with this likely improvement in superior treatments by examining photosynthetic pigment contents, chlorophyll fluorescence, gas exchange parameters, and plant growth and water relation indices. Our study revealed that the plants present different responses according to the intensity of drought stress (moderate and severe) and the time elapsed since re-watering (initial and full-recovery). Severe drought stress caused more damage to the drought-sensitive landrace (Shushtar), but at the same time, melatonin treatment was most effective in improving the performance of stressed plants in this landrace. Our findings further demonstrated that the melatonin function is landrace-specific. The drought tolerance response in sensitive landraces was associated with an increase in the chlorophyll content, improved chlorophyll fluorescence and carboxylation efficiency, and cellular membrane protection. This is the first study to report the advantage of melatonin in drought recovery capability, which was attained in tolerant landraces (Varamin) by a decrease in light reactions of photosynthesis and an improvement in dark reactions of photosynthesis and mitochondrial respiration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
6.20%
发文量
312
审稿时长
1.8 months
期刊介绍: The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches. The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress. In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports. The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信