Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli, Maryam Tamadoni-Saray
{"title":"褪黑素通过提高光合作用的保护能力和羧化效率增强两种不同葫芦巴(Trigonella foenum-graecum L.)陆地品系的耐旱性和恢复能力","authors":"Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli, Maryam Tamadoni-Saray","doi":"10.1007/s00344-024-11419-3","DOIUrl":null,"url":null,"abstract":"<p>Drought stress is a major challenge for agriculture and horticulture, limiting crop growth and productivity. Melatonin, a naturally occurring hormone in plants, has been shown to have potential as a stress reliever and growth regulator. Nonetheless, limited research has perused the effect of melatonin on different morpho-physiological and biochemical parameters during prolonged drought stress and subsequent recovery in contrasting landraces. The study aimed to determine whether the exogenous application of melatonin to two contrasting landraces of fenugreek (<i>Trigonella foenum-graecum</i> L.) can improve drought adaptations through drought stress tolerance and/or drought recovery capability and to find the primary parameters associated with this likely improvement in superior treatments by examining photosynthetic pigment contents, chlorophyll fluorescence, gas exchange parameters, and plant growth and water relation indices. Our study revealed that the plants present different responses according to the intensity of drought stress (moderate and severe) and the time elapsed since re-watering (initial and full-recovery). Severe drought stress caused more damage to the drought-sensitive landrace (Shushtar), but at the same time, melatonin treatment was most effective in improving the performance of stressed plants in this landrace. Our findings further demonstrated that the melatonin function is landrace-specific. The drought tolerance response in sensitive landraces was associated with an increase in the chlorophyll content, improved chlorophyll fluorescence and carboxylation efficiency, and cellular membrane protection. This is the first study to report the advantage of melatonin in drought recovery capability, which was attained in tolerant landraces (Varamin) by a decrease in light reactions of photosynthesis and an improvement in dark reactions of photosynthesis and mitochondrial respiration.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin Enhances Drought Tolerance and Recovery Capability in Two Contrasting Fenugreek (Trigonella foenum-graecum L.) Landraces Through Improved Photosynthetic Apparatus Protection and Carboxylation Efficiency\",\"authors\":\"Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli, Maryam Tamadoni-Saray\",\"doi\":\"10.1007/s00344-024-11419-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drought stress is a major challenge for agriculture and horticulture, limiting crop growth and productivity. Melatonin, a naturally occurring hormone in plants, has been shown to have potential as a stress reliever and growth regulator. Nonetheless, limited research has perused the effect of melatonin on different morpho-physiological and biochemical parameters during prolonged drought stress and subsequent recovery in contrasting landraces. The study aimed to determine whether the exogenous application of melatonin to two contrasting landraces of fenugreek (<i>Trigonella foenum-graecum</i> L.) can improve drought adaptations through drought stress tolerance and/or drought recovery capability and to find the primary parameters associated with this likely improvement in superior treatments by examining photosynthetic pigment contents, chlorophyll fluorescence, gas exchange parameters, and plant growth and water relation indices. Our study revealed that the plants present different responses according to the intensity of drought stress (moderate and severe) and the time elapsed since re-watering (initial and full-recovery). Severe drought stress caused more damage to the drought-sensitive landrace (Shushtar), but at the same time, melatonin treatment was most effective in improving the performance of stressed plants in this landrace. Our findings further demonstrated that the melatonin function is landrace-specific. The drought tolerance response in sensitive landraces was associated with an increase in the chlorophyll content, improved chlorophyll fluorescence and carboxylation efficiency, and cellular membrane protection. This is the first study to report the advantage of melatonin in drought recovery capability, which was attained in tolerant landraces (Varamin) by a decrease in light reactions of photosynthesis and an improvement in dark reactions of photosynthesis and mitochondrial respiration.</p>\",\"PeriodicalId\":16842,\"journal\":{\"name\":\"Journal of Plant Growth Regulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00344-024-11419-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11419-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Melatonin Enhances Drought Tolerance and Recovery Capability in Two Contrasting Fenugreek (Trigonella foenum-graecum L.) Landraces Through Improved Photosynthetic Apparatus Protection and Carboxylation Efficiency
Drought stress is a major challenge for agriculture and horticulture, limiting crop growth and productivity. Melatonin, a naturally occurring hormone in plants, has been shown to have potential as a stress reliever and growth regulator. Nonetheless, limited research has perused the effect of melatonin on different morpho-physiological and biochemical parameters during prolonged drought stress and subsequent recovery in contrasting landraces. The study aimed to determine whether the exogenous application of melatonin to two contrasting landraces of fenugreek (Trigonella foenum-graecum L.) can improve drought adaptations through drought stress tolerance and/or drought recovery capability and to find the primary parameters associated with this likely improvement in superior treatments by examining photosynthetic pigment contents, chlorophyll fluorescence, gas exchange parameters, and plant growth and water relation indices. Our study revealed that the plants present different responses according to the intensity of drought stress (moderate and severe) and the time elapsed since re-watering (initial and full-recovery). Severe drought stress caused more damage to the drought-sensitive landrace (Shushtar), but at the same time, melatonin treatment was most effective in improving the performance of stressed plants in this landrace. Our findings further demonstrated that the melatonin function is landrace-specific. The drought tolerance response in sensitive landraces was associated with an increase in the chlorophyll content, improved chlorophyll fluorescence and carboxylation efficiency, and cellular membrane protection. This is the first study to report the advantage of melatonin in drought recovery capability, which was attained in tolerant landraces (Varamin) by a decrease in light reactions of photosynthesis and an improvement in dark reactions of photosynthesis and mitochondrial respiration.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.