Impagliazzo-Nisan-Wigderson 伪随机发生器在处理排列分支程序时的局限性

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
William M. Hoza, Edward Pyne, Salil Vadhan
{"title":"Impagliazzo-Nisan-Wigderson 伪随机发生器在处理排列分支程序时的局限性","authors":"William M. Hoza,&nbsp;Edward Pyne,&nbsp;Salil Vadhan","doi":"10.1007/s00453-024-01251-2","DOIUrl":null,"url":null,"abstract":"<div><p>The classic Impagliazzo–Nisan–Wigderson (INW) pseudorandom generator (PRG) (STOC ‘94) for space-bounded computation uses a seed of length <span>\\(O(\\log n \\cdot \\log (nw/\\varepsilon )+\\log d)\\)</span> to fool ordered branching programs of length <i>n</i>, width <i>w</i>, and alphabet size <i>d</i> to within error <span>\\(\\varepsilon \\)</span>. A series of works have shown that the analysis of the INW generator can be improved for the class of <i>permutation</i> branching programs or the more general <i>regular</i> branching programs, improving the <span>\\(O(\\log ^2 n)\\)</span> dependence on the length <i>n</i> to <span>\\(O(\\log n)\\)</span> or <span>\\({\\tilde{O}}(\\log n)\\)</span>. However, when also considering the dependence on the other parameters, these analyses still fall short of the optimal PRG seed length <span>\\(O(\\log (nwd/\\varepsilon ))\\)</span>. In this paper, we prove that any “spectral analysis” of the INW generator requires seed length </p><div><div><span>$$\\begin{aligned} \\Omega \\left( \\log n\\cdot \\log \\log \\left( \\min \\{n,d\\}\\right) +\\log n\\cdot \\log \\left( w/\\varepsilon \\right) +\\log d\\right) \\end{aligned}$$</span></div></div><p>to fool ordered permutation branching programs of length <i>n</i>, width <i>w</i>, and alphabet size <i>d</i> to within error <span>\\(\\varepsilon \\)</span>. By “spectral analysis” we mean an analysis of the INW generator that relies only on the spectral expansion of the graphs used to construct the generator; this encompasses all prior analyses of the INW generator. Our lower bound matches the upper bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014) for regular branching programs of alphabet size <span>\\(d=2\\)</span> except for a gap between their <span>\\(O\\left( \\log n \\cdot \\log \\log n\\right) \\)</span> term and our <span>\\(\\Omega \\left( \\log n \\cdot \\log \\log \\min \\{n,d\\}\\right) \\)</span> term. It also matches the upper bounds of Koucký–Nimbhorkar–Pudlák (STOC 2011), De (CCC 2011), and Steinke (ECCC 2012) for constant-width (<span>\\(w=O(1)\\)</span>) permutation branching programs of alphabet size <span>\\(d=2\\)</span> to within a constant factor. To fool permutation branching programs in the measure of <i>spectral norm</i>, we prove that any spectral analysis of the INW generator requires a seed of length <span>\\(\\Omega \\left( \\log n\\cdot \\log \\log n+\\log n\\cdot \\log (1/\\varepsilon )\\right) \\)</span> when the width is at least polynomial in <i>n</i> (<span>\\(w=n^{\\Omega (1)}\\)</span>), matching the recent upper bound of Hoza–Pyne–Vadhan (ITCS 2021) to within a constant factor.\n</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 10","pages":"3153 - 3185"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-024-01251-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Limitations of the Impagliazzo–Nisan–Wigderson Pseudorandom Generator Against Permutation Branching Programs\",\"authors\":\"William M. Hoza,&nbsp;Edward Pyne,&nbsp;Salil Vadhan\",\"doi\":\"10.1007/s00453-024-01251-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classic Impagliazzo–Nisan–Wigderson (INW) pseudorandom generator (PRG) (STOC ‘94) for space-bounded computation uses a seed of length <span>\\\\(O(\\\\log n \\\\cdot \\\\log (nw/\\\\varepsilon )+\\\\log d)\\\\)</span> to fool ordered branching programs of length <i>n</i>, width <i>w</i>, and alphabet size <i>d</i> to within error <span>\\\\(\\\\varepsilon \\\\)</span>. A series of works have shown that the analysis of the INW generator can be improved for the class of <i>permutation</i> branching programs or the more general <i>regular</i> branching programs, improving the <span>\\\\(O(\\\\log ^2 n)\\\\)</span> dependence on the length <i>n</i> to <span>\\\\(O(\\\\log n)\\\\)</span> or <span>\\\\({\\\\tilde{O}}(\\\\log n)\\\\)</span>. However, when also considering the dependence on the other parameters, these analyses still fall short of the optimal PRG seed length <span>\\\\(O(\\\\log (nwd/\\\\varepsilon ))\\\\)</span>. In this paper, we prove that any “spectral analysis” of the INW generator requires seed length </p><div><div><span>$$\\\\begin{aligned} \\\\Omega \\\\left( \\\\log n\\\\cdot \\\\log \\\\log \\\\left( \\\\min \\\\{n,d\\\\}\\\\right) +\\\\log n\\\\cdot \\\\log \\\\left( w/\\\\varepsilon \\\\right) +\\\\log d\\\\right) \\\\end{aligned}$$</span></div></div><p>to fool ordered permutation branching programs of length <i>n</i>, width <i>w</i>, and alphabet size <i>d</i> to within error <span>\\\\(\\\\varepsilon \\\\)</span>. By “spectral analysis” we mean an analysis of the INW generator that relies only on the spectral expansion of the graphs used to construct the generator; this encompasses all prior analyses of the INW generator. Our lower bound matches the upper bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014) for regular branching programs of alphabet size <span>\\\\(d=2\\\\)</span> except for a gap between their <span>\\\\(O\\\\left( \\\\log n \\\\cdot \\\\log \\\\log n\\\\right) \\\\)</span> term and our <span>\\\\(\\\\Omega \\\\left( \\\\log n \\\\cdot \\\\log \\\\log \\\\min \\\\{n,d\\\\}\\\\right) \\\\)</span> term. It also matches the upper bounds of Koucký–Nimbhorkar–Pudlák (STOC 2011), De (CCC 2011), and Steinke (ECCC 2012) for constant-width (<span>\\\\(w=O(1)\\\\)</span>) permutation branching programs of alphabet size <span>\\\\(d=2\\\\)</span> to within a constant factor. To fool permutation branching programs in the measure of <i>spectral norm</i>, we prove that any spectral analysis of the INW generator requires a seed of length <span>\\\\(\\\\Omega \\\\left( \\\\log n\\\\cdot \\\\log \\\\log n+\\\\log n\\\\cdot \\\\log (1/\\\\varepsilon )\\\\right) \\\\)</span> when the width is at least polynomial in <i>n</i> (<span>\\\\(w=n^{\\\\Omega (1)}\\\\)</span>), matching the recent upper bound of Hoza–Pyne–Vadhan (ITCS 2021) to within a constant factor.\\n</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"86 10\",\"pages\":\"3153 - 3185\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00453-024-01251-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-024-01251-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01251-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

经典的Impagliazzo-Nisan-Wigderson(INW)伪随机发生器(PRG)(STOC '94)用于空间边界计算,使用长度为(O(\log n \cdot \log (nw/\varepsilon )+\log d))的种子来欺骗长度为n、宽度为w、字母大小为d的有序分支程序,误差在(\varepsilon \)以内。一系列的研究表明,INW生成器的分析方法可以针对一类排列分支程序或更一般的正则分支程序进行改进,将长度n的依赖性从\(O(\log ^2 n)\改进为\(O(\log n)\)或\({\tilde{O}}(\log n)\)。然而,当同时考虑对其他参数的依赖性时,这些分析仍然达不到最优 PRG 种子长度 (O(\log (nwd/\varepsilon ))。在本文中,我们证明了任何 INW 发生器的 "谱分析 "都需要种子长度 $$\begin{aligned} ($$\begin{aligned})。\Omega \left( \log n\cdot \log \log \left( \min \{n,d\}\right) +\log n\cdot \log \left( w/\varepsilon \right) +\log d\right) \end{aligned}$$ 来愚弄长度为 n、宽度为 w、字母表大小为 d 的有序排列分支程序,误差不超过 \(\varepsilon \)。我们所说的 "谱分析 "是指对 INW 发生器的分析,这种分析只依赖于用于构造发生器的图的谱展开;这包括之前对 INW 发生器的所有分析。我们的下限与 Braverman-Rao-Raz-Yehudayoff (FOCS 2010、SICOMP 2014)对于字母表大小为 \(d=2\) 的正则分支程序的上界,除了他们的 \(O\left( \log n \cdot \log \log n\right) \) 项和我们的 \(\Omega \left( \log n \cdot \log \log \min \{n,d\}\right) \) 项之间的差距。它还与 Koucký-Nimbhorkar-Pudlák (STOC 2011)、De (CCC 2011) 和 Steinke (ECCC 2012) 针对字母表大小为 \(d=2\) 的恒宽((w=O(1)\))置换分支程序提出的上限相匹配,且相差不大。为了愚弄谱规范度量中的置换分支程序,我们证明当宽度至少为 n 的多项式时,INW 生成器的任何谱分析都需要长度为 \(\Omega \left( \log n\cdot \log \log n+\log n\cdot \log (1/\varepsilon )\right) \)的种子、与 Hoza-Pyne-Vadhan 的最新上限(ITCS 2021)相差无几。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limitations of the Impagliazzo–Nisan–Wigderson Pseudorandom Generator Against Permutation Branching Programs

The classic Impagliazzo–Nisan–Wigderson (INW) pseudorandom generator (PRG) (STOC ‘94) for space-bounded computation uses a seed of length \(O(\log n \cdot \log (nw/\varepsilon )+\log d)\) to fool ordered branching programs of length n, width w, and alphabet size d to within error \(\varepsilon \). A series of works have shown that the analysis of the INW generator can be improved for the class of permutation branching programs or the more general regular branching programs, improving the \(O(\log ^2 n)\) dependence on the length n to \(O(\log n)\) or \({\tilde{O}}(\log n)\). However, when also considering the dependence on the other parameters, these analyses still fall short of the optimal PRG seed length \(O(\log (nwd/\varepsilon ))\). In this paper, we prove that any “spectral analysis” of the INW generator requires seed length

$$\begin{aligned} \Omega \left( \log n\cdot \log \log \left( \min \{n,d\}\right) +\log n\cdot \log \left( w/\varepsilon \right) +\log d\right) \end{aligned}$$

to fool ordered permutation branching programs of length n, width w, and alphabet size d to within error \(\varepsilon \). By “spectral analysis” we mean an analysis of the INW generator that relies only on the spectral expansion of the graphs used to construct the generator; this encompasses all prior analyses of the INW generator. Our lower bound matches the upper bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014) for regular branching programs of alphabet size \(d=2\) except for a gap between their \(O\left( \log n \cdot \log \log n\right) \) term and our \(\Omega \left( \log n \cdot \log \log \min \{n,d\}\right) \) term. It also matches the upper bounds of Koucký–Nimbhorkar–Pudlák (STOC 2011), De (CCC 2011), and Steinke (ECCC 2012) for constant-width (\(w=O(1)\)) permutation branching programs of alphabet size \(d=2\) to within a constant factor. To fool permutation branching programs in the measure of spectral norm, we prove that any spectral analysis of the INW generator requires a seed of length \(\Omega \left( \log n\cdot \log \log n+\log n\cdot \log (1/\varepsilon )\right) \) when the width is at least polynomial in n (\(w=n^{\Omega (1)}\)), matching the recent upper bound of Hoza–Pyne–Vadhan (ITCS 2021) to within a constant factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信