相对德拉姆同调有限性的动机证明

IF 0.5 4区 数学 Q3 MATHEMATICS
Alberto Vezzani
{"title":"相对德拉姆同调有限性的动机证明","authors":"Alberto Vezzani","doi":"10.1007/s00013-024-02024-7","DOIUrl":null,"url":null,"abstract":"<div><p>We give a quick proof of the fact that the relative de Rham cohomology groups <span>\\(H^i_{{{\\,\\textrm{dR}\\,}}}(X/S)\\)</span> of a smooth and proper map <i>X</i>/<i>S</i> between schemes over <span>\\({\\mathbb {Q}}\\)</span> are vector bundles on the base, replacing Hodge-theoretic and transcendental methods with <span>\\({\\mathbb {A}}^1\\)</span>-homotopy theory.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A motivic proof of the finiteness of the relative de Rham cohomology\",\"authors\":\"Alberto Vezzani\",\"doi\":\"10.1007/s00013-024-02024-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a quick proof of the fact that the relative de Rham cohomology groups <span>\\\\(H^i_{{{\\\\,\\\\textrm{dR}\\\\,}}}(X/S)\\\\)</span> of a smooth and proper map <i>X</i>/<i>S</i> between schemes over <span>\\\\({\\\\mathbb {Q}}\\\\)</span> are vector bundles on the base, replacing Hodge-theoretic and transcendental methods with <span>\\\\({\\\\mathbb {A}}^1\\\\)</span>-homotopy theory.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02024-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02024-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们用 \({\mathbb {Q}}\) - 同调理论取代了霍奇理论和超越方法,快速证明了在\({\mathbb {A}}^1\) 上的方案之间的光滑适当映射 X/S 的相对 de Rham 同调群是基上的向量束这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A motivic proof of the finiteness of the relative de Rham cohomology

We give a quick proof of the fact that the relative de Rham cohomology groups \(H^i_{{{\,\textrm{dR}\,}}}(X/S)\) of a smooth and proper map X/S between schemes over \({\mathbb {Q}}\) are vector bundles on the base, replacing Hodge-theoretic and transcendental methods with \({\mathbb {A}}^1\)-homotopy theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信