对具有恒定扰动的双缩放极限 SYK 模型的非交换概率洞察:矩、累积量和 q-independence

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Shuang Wu
{"title":"对具有恒定扰动的双缩放极限 SYK 模型的非交换概率洞察:矩、累积量和 q-independence","authors":"Shuang Wu","doi":"10.1088/1751-8121/ad65a6","DOIUrl":null,"url":null,"abstract":"Extending the results of Wu (2022 <italic toggle=\"yes\">J. Phys.</italic> A <bold>55</bold> 415207), we study the double-scaling limit Sachdev–Ye–Kitaev model with an additional diagonal matrix with a fixed number <italic toggle=\"yes\">c</italic> of nonzero constant entries <italic toggle=\"yes\">θ</italic>. This constant diagonal term can be rewritten in terms of Majorana fermion products. Its specific formula depends on the value of <italic toggle=\"yes\">c</italic>. We find exact expressions for the moments of this model. More importantly, by proposing a moment-cumulant relation, we reinterpret the effect of introducing a constant term in the context of non-commutative probability theory. This gives rise to a <inline-formula>\n<tex-math><?CDATA $\\tilde{q}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a6ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> dependent mixture of independences within the moment formula. The parameter <inline-formula>\n<tex-math><?CDATA $\\tilde{q}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a6ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, derived from the <italic toggle=\"yes\">q</italic>-Ornstein–Uhlenbeck (<italic toggle=\"yes\">q</italic>-OU) process, controls this transformation. It interpolates between classical independence (<inline-formula>\n<tex-math><?CDATA $\\tilde{q} = 1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a6ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) and Boolean independence (<inline-formula>\n<tex-math><?CDATA $\\tilde{q} = 0$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\"true\">~</mml:mo></mml:mover></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a6ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>). The underlying combinatorial structures of this model provide the non-commutative probability connections. Additionally, we explore the potential relation between these connections and their gravitational path integral counterparts.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"30 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative probability insights into the double-scaling limit SYK model with constant perturbations: moments, cumulants and q-independence\",\"authors\":\"Shuang Wu\",\"doi\":\"10.1088/1751-8121/ad65a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extending the results of Wu (2022 <italic toggle=\\\"yes\\\">J. Phys.</italic> A <bold>55</bold> 415207), we study the double-scaling limit Sachdev–Ye–Kitaev model with an additional diagonal matrix with a fixed number <italic toggle=\\\"yes\\\">c</italic> of nonzero constant entries <italic toggle=\\\"yes\\\">θ</italic>. This constant diagonal term can be rewritten in terms of Majorana fermion products. Its specific formula depends on the value of <italic toggle=\\\"yes\\\">c</italic>. We find exact expressions for the moments of this model. More importantly, by proposing a moment-cumulant relation, we reinterpret the effect of introducing a constant term in the context of non-commutative probability theory. This gives rise to a <inline-formula>\\n<tex-math><?CDATA $\\\\tilde{q}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\\\"true\\\">~</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a6ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> dependent mixture of independences within the moment formula. The parameter <inline-formula>\\n<tex-math><?CDATA $\\\\tilde{q}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\\\"true\\\">~</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a6ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, derived from the <italic toggle=\\\"yes\\\">q</italic>-Ornstein–Uhlenbeck (<italic toggle=\\\"yes\\\">q</italic>-OU) process, controls this transformation. It interpolates between classical independence (<inline-formula>\\n<tex-math><?CDATA $\\\\tilde{q} = 1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\\\"true\\\">~</mml:mo></mml:mover></mml:mrow><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a6ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) and Boolean independence (<inline-formula>\\n<tex-math><?CDATA $\\\\tilde{q} = 0$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mover><mml:mi>q</mml:mi><mml:mo stretchy=\\\"true\\\">~</mml:mo></mml:mover></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a6ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>). The underlying combinatorial structures of this model provide the non-commutative probability connections. Additionally, we explore the potential relation between these connections and their gravitational path integral counterparts.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad65a6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad65a6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了吴文俊(2022 J. Phys. A 55 415207)的研究成果,研究了双尺度极限萨奇德夫-叶-基塔耶夫模型,其中有一个额外的对角矩阵,具有固定数量的非零常数项θ。我们找到了该模型矩的精确表达式。更重要的是,通过提出矩积关系,我们在非交换概率论的背景下重新解释了引入常数项的效果。这就在矩公式中产生了一个与 q~ 相关的独立混合物。参数 q~ 源自 q-Ornstein-Uhlenbeck (q-OU)过程,它控制着这一转变。它介于经典独立性(q~=1)和布尔独立性(q~=0)之间。该模型的基本组合结构提供了非交换概率联系。此外,我们还探索了这些联系与其引力路径积分对应物之间的潜在关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-commutative probability insights into the double-scaling limit SYK model with constant perturbations: moments, cumulants and q-independence
Extending the results of Wu (2022 J. Phys. A 55 415207), we study the double-scaling limit Sachdev–Ye–Kitaev model with an additional diagonal matrix with a fixed number c of nonzero constant entries θ. This constant diagonal term can be rewritten in terms of Majorana fermion products. Its specific formula depends on the value of c. We find exact expressions for the moments of this model. More importantly, by proposing a moment-cumulant relation, we reinterpret the effect of introducing a constant term in the context of non-commutative probability theory. This gives rise to a q~ dependent mixture of independences within the moment formula. The parameter q~ , derived from the q-Ornstein–Uhlenbeck (q-OU) process, controls this transformation. It interpolates between classical independence ( q~=1 ) and Boolean independence ( q~=0 ). The underlying combinatorial structures of this model provide the non-commutative probability connections. Additionally, we explore the potential relation between these connections and their gravitational path integral counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信