{"title":"带有倾斜初始数据的 T 系统北极曲线","authors":"Philippe Di Francesco, Hieu Trung Vu","doi":"10.1088/1751-8121/ad65a5","DOIUrl":null,"url":null,"abstract":"We study the <italic toggle=\"yes\">T</italic>-system of type <inline-formula>\n<tex-math><?CDATA $A_\\infty$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi mathvariant=\"normal\">∞</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a5ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, also known as the octahedron recurrence/equation, viewed as a <inline-formula>\n<tex-math><?CDATA $2+1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a5ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction <inline-formula>\n<tex-math><?CDATA $(r,s,t)\\in {\\mathbb{Z}}_+^3$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>r</mml:mi><mml:mo>,</mml:mo><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>∈</mml:mo><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mn>3</mml:mn></mml:msubsup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a5ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The corresponding solutions of the <italic toggle=\"yes\">T</italic>-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. The <italic toggle=\"yes\">T</italic>-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arctic curves of the T-system with slanted initial data\",\"authors\":\"Philippe Di Francesco, Hieu Trung Vu\",\"doi\":\"10.1088/1751-8121/ad65a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the <italic toggle=\\\"yes\\\">T</italic>-system of type <inline-formula>\\n<tex-math><?CDATA $A_\\\\infty$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi mathvariant=\\\"normal\\\">∞</mml:mi></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a5ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, also known as the octahedron recurrence/equation, viewed as a <inline-formula>\\n<tex-math><?CDATA $2+1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a5ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>-dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction <inline-formula>\\n<tex-math><?CDATA $(r,s,t)\\\\in {\\\\mathbb{Z}}_+^3$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>r</mml:mi><mml:mo>,</mml:mo><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>∈</mml:mo><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mn>3</mml:mn></mml:msubsup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad65a5ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The corresponding solutions of the <italic toggle=\\\"yes\\\">T</italic>-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. The <italic toggle=\\\"yes\\\">T</italic>-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad65a5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad65a5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Arctic curves of the T-system with slanted initial data
We study the T-system of type A∞, also known as the octahedron recurrence/equation, viewed as a 2+1-dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction (r,s,t)∈Z+3. The corresponding solutions of the T-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. The T-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.