{"title":"来自广义等边紧帧的信息超完全测量","authors":"Katarzyna Siudzińska","doi":"10.1088/1751-8121/ad6722","DOIUrl":null,"url":null,"abstract":"Informationally overcomplete measurements find important applications in quantum tomography and quantum state estimation. The most popular are maximal sets of mutually unbiased bases, for which trace relations between measurement operators are well known. In this paper, we introduce a more general class of informationally overcomplete positive, operator-valued measure (POVMs) that are generated by equiangular tight frames of arbitrary rank. This class provides a generalization of equiangular measurements to non-projective POVMs, which include rescaled mutually unbiased measurements and bases. We provide a method of their construction, analyze their symmetry properties, and provide examples for highly symmetric cases. In particular, we find a wide class of generalized equiangular measurements that are conical two-designs, which allows us to derive the index of coincidence. Our results show benefits of considering a single informationally overcomplete measurement over informationally complete collections of POVMs.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"88 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Informationally overcomplete measurements from generalized equiangular tight frames\",\"authors\":\"Katarzyna Siudzińska\",\"doi\":\"10.1088/1751-8121/ad6722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Informationally overcomplete measurements find important applications in quantum tomography and quantum state estimation. The most popular are maximal sets of mutually unbiased bases, for which trace relations between measurement operators are well known. In this paper, we introduce a more general class of informationally overcomplete positive, operator-valued measure (POVMs) that are generated by equiangular tight frames of arbitrary rank. This class provides a generalization of equiangular measurements to non-projective POVMs, which include rescaled mutually unbiased measurements and bases. We provide a method of their construction, analyze their symmetry properties, and provide examples for highly symmetric cases. In particular, we find a wide class of generalized equiangular measurements that are conical two-designs, which allows us to derive the index of coincidence. Our results show benefits of considering a single informationally overcomplete measurement over informationally complete collections of POVMs.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6722\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6722","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Informationally overcomplete measurements from generalized equiangular tight frames
Informationally overcomplete measurements find important applications in quantum tomography and quantum state estimation. The most popular are maximal sets of mutually unbiased bases, for which trace relations between measurement operators are well known. In this paper, we introduce a more general class of informationally overcomplete positive, operator-valued measure (POVMs) that are generated by equiangular tight frames of arbitrary rank. This class provides a generalization of equiangular measurements to non-projective POVMs, which include rescaled mutually unbiased measurements and bases. We provide a method of their construction, analyze their symmetry properties, and provide examples for highly symmetric cases. In particular, we find a wide class of generalized equiangular measurements that are conical two-designs, which allows us to derive the index of coincidence. Our results show benefits of considering a single informationally overcomplete measurement over informationally complete collections of POVMs.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.