在无限 N 极限通过玻色两点函数重新审视 (1+1) 维手性格罗斯-涅乌模型中的空间不均匀凝聚态

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Adrian Koenigstein, Marc Winstel
{"title":"在无限 N 极限通过玻色两点函数重新审视 (1+1) 维手性格罗斯-涅乌模型中的空间不均匀凝聚态","authors":"Adrian Koenigstein, Marc Winstel","doi":"10.1088/1751-8121/ad6721","DOIUrl":null,"url":null,"abstract":"This work shows that the known phase boundary between the phase with chiral symmetry and the phase of spatially inhomogeneous chiral symmetry breaking in the phase diagram of the <inline-formula>\n<tex-math><?CDATA $(1 + 1)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad6721ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-dimensional chiral Gross–Neveu (GN) model can be detected from the bosonic two-point function alone and thereby confirms and extends previous results (Schön and Thies 2000 <italic toggle=\"yes\">At The Frontier of Particle Physics: Handbook of QCD, Boris Ioffe Festschrift</italic> vol 3 (World Scentific) ch 33, pp 1945–2032; Boehmer <italic toggle=\"yes\">et al</italic> 2008 <italic toggle=\"yes\">Phys. Rev.</italic> D <bold>78</bold> 065043; Boehmer and Thies 2009 <italic toggle=\"yes\">Phys. Rev.</italic> D <bold>80</bold> 125038; Thies 2018 <italic toggle=\"yes\">Phys. Rev.</italic> D <bold>98</bold> 096019; Thies 2022 <italic toggle=\"yes\">Phys. Rev.</italic> D <bold>105</bold> 116003). The analysis is referred to as the stability analysis of the symmetric phase and does not require knowledge about spatial modulations of condensates. We perform this analysis in the infinite-<italic toggle=\"yes\">N</italic> limit at nonzero temperature and nonzero quark and chiral chemical potentials also inside the inhomogeneous phase. Thereby we observe an interesting relation between the bosonic 1-particle irreducible two-point vertex function of the chiral GN model and the spinodal line of the GN model.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"145 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the spatially inhomogeneous condensates in the (1+1) -dimensional chiral Gross–Neveu model via the bosonic two-point function in the infinite-N limit\",\"authors\":\"Adrian Koenigstein, Marc Winstel\",\"doi\":\"10.1088/1751-8121/ad6721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work shows that the known phase boundary between the phase with chiral symmetry and the phase of spatially inhomogeneous chiral symmetry breaking in the phase diagram of the <inline-formula>\\n<tex-math><?CDATA $(1 + 1)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"aad6721ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>-dimensional chiral Gross–Neveu (GN) model can be detected from the bosonic two-point function alone and thereby confirms and extends previous results (Schön and Thies 2000 <italic toggle=\\\"yes\\\">At The Frontier of Particle Physics: Handbook of QCD, Boris Ioffe Festschrift</italic> vol 3 (World Scentific) ch 33, pp 1945–2032; Boehmer <italic toggle=\\\"yes\\\">et al</italic> 2008 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> D <bold>78</bold> 065043; Boehmer and Thies 2009 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> D <bold>80</bold> 125038; Thies 2018 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> D <bold>98</bold> 096019; Thies 2022 <italic toggle=\\\"yes\\\">Phys. Rev.</italic> D <bold>105</bold> 116003). The analysis is referred to as the stability analysis of the symmetric phase and does not require knowledge about spatial modulations of condensates. We perform this analysis in the infinite-<italic toggle=\\\"yes\\\">N</italic> limit at nonzero temperature and nonzero quark and chiral chemical potentials also inside the inhomogeneous phase. Thereby we observe an interesting relation between the bosonic 1-particle irreducible two-point vertex function of the chiral GN model and the spinodal line of the GN model.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6721\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6721","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作表明,在(1+1)维手性格罗斯-涅维(GN)模型的相图中,手性对称相与空间不均匀手性对称破缺相之间的已知相界可以仅从玻色两点函数中探测到,从而证实并扩展了之前的结果(Schön 和 Thies 2000 年《粒子物理学前沿:QCD 手册》,Boris Ioffe Festschrift 第 3 卷(世界科学)第 33 章,第 1945-2032 页;Boehmer 等人 2008 年《物理评论 D》78 065043 页;Boehmer 和 Thies 2009 年《物理评论 D》80 125038 页;Thies 2018 年《物理评论 D》98 096019 页;Thies 2022 年《物理评论 D》105 115038 页)。Rev. D 78 065043; Boehmer and Thies 2009 Phys. Rev. D 80 125038; Thies 2018 Phys.)该分析被称为对称相的稳定性分析,不需要关于凝聚态空间调制的知识。我们在非零温度、非零夸克化学势和手性化学势下的无穷 N 极限以及非均相相内进行了这一分析。因此,我们观察到了手性 GN 模型的玻色 1 粒子不可还原两点顶点函数与 GN 模型的自旋线之间的有趣关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the spatially inhomogeneous condensates in the (1+1) -dimensional chiral Gross–Neveu model via the bosonic two-point function in the infinite-N limit
This work shows that the known phase boundary between the phase with chiral symmetry and the phase of spatially inhomogeneous chiral symmetry breaking in the phase diagram of the (1+1) -dimensional chiral Gross–Neveu (GN) model can be detected from the bosonic two-point function alone and thereby confirms and extends previous results (Schön and Thies 2000 At The Frontier of Particle Physics: Handbook of QCD, Boris Ioffe Festschrift vol 3 (World Scentific) ch 33, pp 1945–2032; Boehmer et al 2008 Phys. Rev. D 78 065043; Boehmer and Thies 2009 Phys. Rev. D 80 125038; Thies 2018 Phys. Rev. D 98 096019; Thies 2022 Phys. Rev. D 105 116003). The analysis is referred to as the stability analysis of the symmetric phase and does not require knowledge about spatial modulations of condensates. We perform this analysis in the infinite-N limit at nonzero temperature and nonzero quark and chiral chemical potentials also inside the inhomogeneous phase. Thereby we observe an interesting relation between the bosonic 1-particle irreducible two-point vertex function of the chiral GN model and the spinodal line of the GN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信