多折射 De Donder-Weyl 哈密顿场论中的典型提升

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Arnoldo Guerra IV, Narciso Román-Roy
{"title":"多折射 De Donder-Weyl 哈密顿场论中的典型提升","authors":"Arnoldo Guerra IV, Narciso Román-Roy","doi":"10.1088/1751-8121/ad6654","DOIUrl":null,"url":null,"abstract":"We define canonical lifts of vector fields to the multisymplectic multimomentum bundles of De Donder–Weyl Hamiltonian (first-order) field theories and to the appropriate premultisymplectic embedded constraint submanifolds on which singular field theories are studied. These new canonical lifts are used to study the so-called <italic toggle=\"yes\">natural Noether symmetries</italic> present in both regular and singular Hamiltonian field theories along with their associated conserved quantities obtained from Noether’s theorem. The <italic toggle=\"yes\">Klein–Gordon field</italic>, the <italic toggle=\"yes\">Polyakov bosonic string</italic>, and <italic toggle=\"yes\">Einstein–Cartan gravity in 3+1 dimensions</italic> are analyzed in depth as applications of these concepts; as a peripheral result obtained in the analysis of the bosonic string, we provide a new geometrical interpretation of the well-known <italic toggle=\"yes\">Virasoro constraint</italic>.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"96 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical lifts in multisymplectic De Donder–Weyl Hamiltonian field theories\",\"authors\":\"Arnoldo Guerra IV, Narciso Román-Roy\",\"doi\":\"10.1088/1751-8121/ad6654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define canonical lifts of vector fields to the multisymplectic multimomentum bundles of De Donder–Weyl Hamiltonian (first-order) field theories and to the appropriate premultisymplectic embedded constraint submanifolds on which singular field theories are studied. These new canonical lifts are used to study the so-called <italic toggle=\\\"yes\\\">natural Noether symmetries</italic> present in both regular and singular Hamiltonian field theories along with their associated conserved quantities obtained from Noether’s theorem. The <italic toggle=\\\"yes\\\">Klein–Gordon field</italic>, the <italic toggle=\\\"yes\\\">Polyakov bosonic string</italic>, and <italic toggle=\\\"yes\\\">Einstein–Cartan gravity in 3+1 dimensions</italic> are analyzed in depth as applications of these concepts; as a peripheral result obtained in the analysis of the bosonic string, we provide a new geometrical interpretation of the well-known <italic toggle=\\\"yes\\\">Virasoro constraint</italic>.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6654\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6654","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了向量场到 De Donder-Weyl 哈密顿(一阶)场论的多折射多动量束以及奇异场论所研究的适当前多折射嵌入约束子曼形上的典型提升。这些新的典型提升用于研究规则和奇异哈密顿场论中存在的所谓自然诺特对称性,以及从诺特定理中获得的相关守恒量。作为这些概念的应用,我们深入分析了 3+1 维中的克莱因-戈登场、波利亚科夫玻色弦和爱因斯坦-卡尔坦引力;作为玻色弦分析中获得的一个外围结果,我们为著名的维拉索罗约束提供了一种新的几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical lifts in multisymplectic De Donder–Weyl Hamiltonian field theories
We define canonical lifts of vector fields to the multisymplectic multimomentum bundles of De Donder–Weyl Hamiltonian (first-order) field theories and to the appropriate premultisymplectic embedded constraint submanifolds on which singular field theories are studied. These new canonical lifts are used to study the so-called natural Noether symmetries present in both regular and singular Hamiltonian field theories along with their associated conserved quantities obtained from Noether’s theorem. The Klein–Gordon field, the Polyakov bosonic string, and Einstein–Cartan gravity in 3+1 dimensions are analyzed in depth as applications of these concepts; as a peripheral result obtained in the analysis of the bosonic string, we provide a new geometrical interpretation of the well-known Virasoro constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信