{"title":"弱传递框架的麦肯锡公理","authors":"Qian Chen, Minghui Ma","doi":"10.1007/s11225-024-10145-x","DOIUrl":null,"url":null,"abstract":"<p>The McKinsey axiom <span>\\((\\textrm{M})\\ \\Box \\Diamond p\\rightarrow \\Diamond \\Box p\\)</span> has a local first-order correspondent on the class of all weakly transitive frames <span>\\({{\\mathcal {W}}}{{\\mathcal {T}}}\\)</span>. It globally corresponds to Lemmon’s condition <span>\\(({\\textsf{m}}^\\infty )\\)</span> on <span>\\({{\\mathcal {W}}}{{\\mathcal {T}}}\\)</span>. The formula <span>\\((\\textrm{M})\\)</span> is canonical over the weakly transitive modal logic <span>\\(\\textsf{wK4}={\\textsf{K}}\\oplus p\\wedge \\Box p\\rightarrow \\Box \\Box p\\)</span>. The modal logic <span>\\(\\mathsf {wK4.1}=\\textsf{wK4}\\oplus \\textrm{M}\\)</span> has the finite model property. The modal logics <span>\\(\\mathsf {wK4.1T}_0^n\\)</span> (<span>\\( n>0\\)</span>) form an infinite descending chain in the interval <span>\\([\\mathsf {wK4.1},\\mathsf {K4.1}]\\)</span> and each of them has the finite model property. Thus all the modal logics <span>\\(\\mathsf {wK4.1}\\)</span> and <span>\\(\\mathsf {wK4.1T}_0^n\\)</span> (<span>\\(n>0\\)</span>) are decidable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The McKinsey Axiom on Weakly Transitive Frames\",\"authors\":\"Qian Chen, Minghui Ma\",\"doi\":\"10.1007/s11225-024-10145-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The McKinsey axiom <span>\\\\((\\\\textrm{M})\\\\ \\\\Box \\\\Diamond p\\\\rightarrow \\\\Diamond \\\\Box p\\\\)</span> has a local first-order correspondent on the class of all weakly transitive frames <span>\\\\({{\\\\mathcal {W}}}{{\\\\mathcal {T}}}\\\\)</span>. It globally corresponds to Lemmon’s condition <span>\\\\(({\\\\textsf{m}}^\\\\infty )\\\\)</span> on <span>\\\\({{\\\\mathcal {W}}}{{\\\\mathcal {T}}}\\\\)</span>. The formula <span>\\\\((\\\\textrm{M})\\\\)</span> is canonical over the weakly transitive modal logic <span>\\\\(\\\\textsf{wK4}={\\\\textsf{K}}\\\\oplus p\\\\wedge \\\\Box p\\\\rightarrow \\\\Box \\\\Box p\\\\)</span>. The modal logic <span>\\\\(\\\\mathsf {wK4.1}=\\\\textsf{wK4}\\\\oplus \\\\textrm{M}\\\\)</span> has the finite model property. The modal logics <span>\\\\(\\\\mathsf {wK4.1T}_0^n\\\\)</span> (<span>\\\\( n>0\\\\)</span>) form an infinite descending chain in the interval <span>\\\\([\\\\mathsf {wK4.1},\\\\mathsf {K4.1}]\\\\)</span> and each of them has the finite model property. Thus all the modal logics <span>\\\\(\\\\mathsf {wK4.1}\\\\)</span> and <span>\\\\(\\\\mathsf {wK4.1T}_0^n\\\\)</span> (<span>\\\\(n>0\\\\)</span>) are decidable.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10145-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10145-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The McKinsey axiom \((\textrm{M})\ \Box \Diamond p\rightarrow \Diamond \Box p\) has a local first-order correspondent on the class of all weakly transitive frames \({{\mathcal {W}}}{{\mathcal {T}}}\). It globally corresponds to Lemmon’s condition \(({\textsf{m}}^\infty )\) on \({{\mathcal {W}}}{{\mathcal {T}}}\). The formula \((\textrm{M})\) is canonical over the weakly transitive modal logic \(\textsf{wK4}={\textsf{K}}\oplus p\wedge \Box p\rightarrow \Box \Box p\). The modal logic \(\mathsf {wK4.1}=\textsf{wK4}\oplus \textrm{M}\) has the finite model property. The modal logics \(\mathsf {wK4.1T}_0^n\) (\( n>0\)) form an infinite descending chain in the interval \([\mathsf {wK4.1},\mathsf {K4.1}]\) and each of them has the finite model property. Thus all the modal logics \(\mathsf {wK4.1}\) and \(\mathsf {wK4.1T}_0^n\) (\(n>0\)) are decidable.