{"title":"物理力量驱动秀丽隐杆线虫胚胎变形","authors":"Ting Wang , Martine Ben Amar","doi":"10.1016/j.ijnonlinmec.2024.104833","DOIUrl":null,"url":null,"abstract":"<div><p>The abnormal development of embryos is closely linked to abnormal cell division and elongation, but the underlying mechanism remains to be elucidated. The embryonic development of <em>C elegans</em> embryo is different because it occurs without cell proliferation or cell rearrangement. Here, we focus on a spectacular 4-fold elongation that is achieved approximately 3 h before the egg shell hatches and results from active filament networks. The body shape is represented by an inhomogeneous cylinder, which allows us to assess the active stresses induced by the actomyosin network located in the cortex and the muscles in ventral position near the epidermis. By considering the specific embryo configuration, we can quantitatively obtain the contractile forces induced by actomyosin filaments and muscles for a bending torsion event with defined curvature. We find that the active stress induced by actomyosin molecular motors or muscles increases with elongation and bending curvature, while also varying with radius. Both elongation and torsional deformation contribute to increased moment magnitudes that explain the dynamics of the embryo in the egg. Our results highlight the complex interplay between biomechanical factors in modulating embryonic deformation.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"166 ","pages":"Article 104833"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical forces drive C. elegans embryonic deformation\",\"authors\":\"Ting Wang , Martine Ben Amar\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The abnormal development of embryos is closely linked to abnormal cell division and elongation, but the underlying mechanism remains to be elucidated. The embryonic development of <em>C elegans</em> embryo is different because it occurs without cell proliferation or cell rearrangement. Here, we focus on a spectacular 4-fold elongation that is achieved approximately 3 h before the egg shell hatches and results from active filament networks. The body shape is represented by an inhomogeneous cylinder, which allows us to assess the active stresses induced by the actomyosin network located in the cortex and the muscles in ventral position near the epidermis. By considering the specific embryo configuration, we can quantitatively obtain the contractile forces induced by actomyosin filaments and muscles for a bending torsion event with defined curvature. We find that the active stress induced by actomyosin molecular motors or muscles increases with elongation and bending curvature, while also varying with radius. Both elongation and torsional deformation contribute to increased moment magnitudes that explain the dynamics of the embryo in the egg. Our results highlight the complex interplay between biomechanical factors in modulating embryonic deformation.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"166 \",\"pages\":\"Article 104833\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224001987\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224001987","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Physical forces drive C. elegans embryonic deformation
The abnormal development of embryos is closely linked to abnormal cell division and elongation, but the underlying mechanism remains to be elucidated. The embryonic development of C elegans embryo is different because it occurs without cell proliferation or cell rearrangement. Here, we focus on a spectacular 4-fold elongation that is achieved approximately 3 h before the egg shell hatches and results from active filament networks. The body shape is represented by an inhomogeneous cylinder, which allows us to assess the active stresses induced by the actomyosin network located in the cortex and the muscles in ventral position near the epidermis. By considering the specific embryo configuration, we can quantitatively obtain the contractile forces induced by actomyosin filaments and muscles for a bending torsion event with defined curvature. We find that the active stress induced by actomyosin molecular motors or muscles increases with elongation and bending curvature, while also varying with radius. Both elongation and torsional deformation contribute to increased moment magnitudes that explain the dynamics of the embryo in the egg. Our results highlight the complex interplay between biomechanical factors in modulating embryonic deformation.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.