{"title":"条形码网格的组合结果","authors":"Alex Bouquet, Andrés R. Vindas-Meléndez","doi":"10.1007/s11083-024-09670-0","DOIUrl":null,"url":null,"abstract":"<p>A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial Results on Barcode Lattices\",\"authors\":\"Alex Bouquet, Andrés R. Vindas-Meléndez\",\"doi\":\"10.1007/s11083-024-09670-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09670-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09670-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.