涉及 $π(x)$ 中高阶多项式函数的不等式

Subham De
{"title":"涉及 $π(x)$ 中高阶多项式函数的不等式","authors":"Subham De","doi":"arxiv-2407.18983","DOIUrl":null,"url":null,"abstract":"The primary purpose of this article is to study the asymptotic and numerical\nestimates in detail for higher degree polynomials in $\\pi(x)$ having a general\nexpression of the form, \\begin{align*} P(\\pi(x)) - \\frac{e x}{\\log x} Q(\\pi(x/e)) + R(x) \\end{align*} $P$, $Q$ and $R$ are arbitrarily chosen polynomials and $\\pi(x)$\ndenotes the \\textit{Prime Counting Function}. The proofs require specific order\nestimates involving $\\pi(x)$ and the \\textit{Second Chebyshev Function}\n$\\psi(x)$, as well as the famous \\textit{Prime Number Theorem} in addition to\ncertain meromorphic properties of the \\textit{Riemann Zeta Function} $\\zeta(s)$\nand results regarding its non-trivial zeros. A few generalizations of these\nconcepts have also been discussed in detail towards the later stages of the\npaper, along with citing some important applications.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities involving Higher Degree Polynomial Functions in $π(x)$\",\"authors\":\"Subham De\",\"doi\":\"arxiv-2407.18983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary purpose of this article is to study the asymptotic and numerical\\nestimates in detail for higher degree polynomials in $\\\\pi(x)$ having a general\\nexpression of the form, \\\\begin{align*} P(\\\\pi(x)) - \\\\frac{e x}{\\\\log x} Q(\\\\pi(x/e)) + R(x) \\\\end{align*} $P$, $Q$ and $R$ are arbitrarily chosen polynomials and $\\\\pi(x)$\\ndenotes the \\\\textit{Prime Counting Function}. The proofs require specific order\\nestimates involving $\\\\pi(x)$ and the \\\\textit{Second Chebyshev Function}\\n$\\\\psi(x)$, as well as the famous \\\\textit{Prime Number Theorem} in addition to\\ncertain meromorphic properties of the \\\\textit{Riemann Zeta Function} $\\\\zeta(s)$\\nand results regarding its non-trivial zeros. A few generalizations of these\\nconcepts have also been discussed in detail towards the later stages of the\\npaper, along with citing some important applications.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是详细研究$\pi(x)$ 中具有一般表达式的高次多项式的渐近和数值估计。P(\pi(x)) - Q(\pi(x/e))+ R(x) \end{align*}$P$、$Q$ 和 $R$ 是任意选择的多项式,$\pi(x)$ 表示 \textit{Prime Counting Function}。证明除了需要涉及 $\pi(x)$ 和 \textit{Second Chebyshev Function}$\psi(x)$ 的特定命令估计之外,还需要著名的 \textit{Prime Number Theorem},以及 \textit{Riemann Zeta Function} $\zeta(s)$ 的某些非整数性质和关于其非整数零点的结果。在本文的后期阶段,还详细讨论了这些概念的一些概括,并列举了一些重要的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities involving Higher Degree Polynomial Functions in $π(x)$
The primary purpose of this article is to study the asymptotic and numerical estimates in detail for higher degree polynomials in $\pi(x)$ having a general expression of the form, \begin{align*} P(\pi(x)) - \frac{e x}{\log x} Q(\pi(x/e)) + R(x) \end{align*} $P$, $Q$ and $R$ are arbitrarily chosen polynomials and $\pi(x)$ denotes the \textit{Prime Counting Function}. The proofs require specific order estimates involving $\pi(x)$ and the \textit{Second Chebyshev Function} $\psi(x)$, as well as the famous \textit{Prime Number Theorem} in addition to certain meromorphic properties of the \textit{Riemann Zeta Function} $\zeta(s)$ and results regarding its non-trivial zeros. A few generalizations of these concepts have also been discussed in detail towards the later stages of the paper, along with citing some important applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信