半原始根与不可还原二次函数形式

Marc Wolf, François Wolf
{"title":"半原始根与不可还原二次函数形式","authors":"Marc Wolf, François Wolf","doi":"arxiv-2407.20269","DOIUrl":null,"url":null,"abstract":"Modulo a prime number, we define semi-primitive roots as the square of\nprimitive roots. We present a method for calculating primitive roots from\nquadratic residues, including semi-primitive roots. We then present\nprogressions that generate primitive and semi-primitive roots, and deduce an\nalgorithm to obtain the full set of primitive roots without any GCD\ncalculation. Next, we present a method for determining irreducible quadratic\nforms with arbitrarily large conjectured asymptotic density of primes (after\nShanks, [1][2]). To this end, we propose an algorithm for calculating the\nsquare root modulo p, based on the Tonelli-Shanks algorithm [4].","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-primitive roots and irreducible quadratic forms\",\"authors\":\"Marc Wolf, François Wolf\",\"doi\":\"arxiv-2407.20269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modulo a prime number, we define semi-primitive roots as the square of\\nprimitive roots. We present a method for calculating primitive roots from\\nquadratic residues, including semi-primitive roots. We then present\\nprogressions that generate primitive and semi-primitive roots, and deduce an\\nalgorithm to obtain the full set of primitive roots without any GCD\\ncalculation. Next, we present a method for determining irreducible quadratic\\nforms with arbitrarily large conjectured asymptotic density of primes (after\\nShanks, [1][2]). To this end, we propose an algorithm for calculating the\\nsquare root modulo p, based on the Tonelli-Shanks algorithm [4].\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将半原始根定义为原始根的平方。我们提出了一种从二次残差(包括半原始根)计算原始根的方法。然后,我们提出了生成初等根和半初等根的级数,并推导出无需任何 GCD 计算即可获得全套初等根的类似算法。接下来,我们提出了一种确定具有任意大的素数猜想渐近密度的不可还原二次型的方法(after Shanks, [1][2])。为此,我们基于托内利-香克斯算法[4],提出了一种计算 p 的平方根模的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-primitive roots and irreducible quadratic forms
Modulo a prime number, we define semi-primitive roots as the square of primitive roots. We present a method for calculating primitive roots from quadratic residues, including semi-primitive roots. We then present progressions that generate primitive and semi-primitive roots, and deduce an algorithm to obtain the full set of primitive roots without any GCD calculation. Next, we present a method for determining irreducible quadratic forms with arbitrarily large conjectured asymptotic density of primes (after Shanks, [1][2]). To this end, we propose an algorithm for calculating the square root modulo p, based on the Tonelli-Shanks algorithm [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信