粘弹性理论中出现的 Volterra 积分微分方程的良好求解性

Pub Date : 2024-07-30 DOI:10.1134/s0012266124040098
D. V. Georgievskii, N. A. Rautian
{"title":"粘弹性理论中出现的 Volterra 积分微分方程的良好求解性","authors":"D. V. Georgievskii, N. A. Rautian","doi":"10.1134/s0012266124040098","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We discuss the well-posed solvability and exponential stability of solutions of abstract\nintegro-differential equations where the kernels of integral operators are of general type and lie in\nthe space of functions integrable on the positive half-line. The abstract integro-differential\nequations studied in the present paper are operator models of viscoelasticity theory problems. The\nproposed approach to the study of these integro-differential equations is related to an application\nof semigroup theory and can also be used to study other integro-differential equations containing\nintegral terms of the Volterra convolution type.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posed Solvability of Volterra Integro-Differential Equations Arising in Viscoelasticity Theory\",\"authors\":\"D. V. Georgievskii, N. A. Rautian\",\"doi\":\"10.1134/s0012266124040098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We discuss the well-posed solvability and exponential stability of solutions of abstract\\nintegro-differential equations where the kernels of integral operators are of general type and lie in\\nthe space of functions integrable on the positive half-line. The abstract integro-differential\\nequations studied in the present paper are operator models of viscoelasticity theory problems. The\\nproposed approach to the study of these integro-differential equations is related to an application\\nof semigroup theory and can also be used to study other integro-differential equations containing\\nintegral terms of the Volterra convolution type.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124040098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们讨论了抽象积分微分方程解的可解性和指数稳定性,其中积分算子的核为一般类型,且位于正半线上可积分的函数空间内。本文研究的抽象积分微分方程是粘弹性理论问题的算子模型。本文提出的研究这些整微分方程的方法与半群理论的应用有关,也可用于研究其他包含 Volterra 卷积型积分项的整微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Well-Posed Solvability of Volterra Integro-Differential Equations Arising in Viscoelasticity Theory

Abstract

We discuss the well-posed solvability and exponential stability of solutions of abstract integro-differential equations where the kernels of integral operators are of general type and lie in the space of functions integrable on the positive half-line. The abstract integro-differential equations studied in the present paper are operator models of viscoelasticity theory problems. The proposed approach to the study of these integro-differential equations is related to an application of semigroup theory and can also be used to study other integro-differential equations containing integral terms of the Volterra convolution type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信