卷积型三阶非线性积分微分方程的初值问题

Pub Date : 2024-07-30 DOI:10.1134/s0012266124040086
S. N. Askhabov
{"title":"卷积型三阶非线性积分微分方程的初值问题","authors":"S. N. Askhabov","doi":"10.1134/s0012266124040086","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In this paper, we obtain two-sided a priori estimates for the solution of a homogeneous\nthird-order Volterra integro-differential equation with a power-law nonlinearity and difference\nkernel. It is shown that the lower a priori estimate, which plays the role of a weight function when\nconstructing a metric in the cone of the space of continuous functions, is sharp. Using these\nestimates, by the weighted metric method (an analog of A. Bielecki’s method), we prove a global\ntheorem on the existence and uniqueness of a nontrivial solution of the initial value problem for\nthis integro-differential equation in the class of nonnegative continuous functions on the positive\nhalf-line and on the method for finding this solution. It is shown that the solution can be found by\nthe successive approximation method, and an estimate of the rate of convergence of the\napproximations to the exact solution is obtained. Examples are given to illustrate the results\nobtained.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial Value Problem for a Third-Order Nonlinear Integro-Differential Equation of Convolution Type\",\"authors\":\"S. N. Askhabov\",\"doi\":\"10.1134/s0012266124040086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> In this paper, we obtain two-sided a priori estimates for the solution of a homogeneous\\nthird-order Volterra integro-differential equation with a power-law nonlinearity and difference\\nkernel. It is shown that the lower a priori estimate, which plays the role of a weight function when\\nconstructing a metric in the cone of the space of continuous functions, is sharp. Using these\\nestimates, by the weighted metric method (an analog of A. Bielecki’s method), we prove a global\\ntheorem on the existence and uniqueness of a nontrivial solution of the initial value problem for\\nthis integro-differential equation in the class of nonnegative continuous functions on the positive\\nhalf-line and on the method for finding this solution. It is shown that the solution can be found by\\nthe successive approximation method, and an estimate of the rate of convergence of the\\napproximations to the exact solution is obtained. Examples are given to illustrate the results\\nobtained.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124040086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文获得了具有幂律非线性和差分核的同质三阶 Volterra 积分微分方程解的双侧先验估计。结果表明,下先验估计值是尖锐的,它在构造连续函数空间锥体中的度量时起着权重函数的作用。利用这些估计值,通过加权度量方法(A. Bielecki 方法的类似方法),我们证明了一个全局定理,即在正半线上的非负连续函数类中的积分微分方程的初值问题的非唯一解的存在性和唯一性,以及找到该解的方法。结果表明,可以用逐次逼近法求解,并得到了逼近精确解的收敛速率的估计值。举例说明了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Initial Value Problem for a Third-Order Nonlinear Integro-Differential Equation of Convolution Type

Abstract

In this paper, we obtain two-sided a priori estimates for the solution of a homogeneous third-order Volterra integro-differential equation with a power-law nonlinearity and difference kernel. It is shown that the lower a priori estimate, which plays the role of a weight function when constructing a metric in the cone of the space of continuous functions, is sharp. Using these estimates, by the weighted metric method (an analog of A. Bielecki’s method), we prove a global theorem on the existence and uniqueness of a nontrivial solution of the initial value problem for this integro-differential equation in the class of nonnegative continuous functions on the positive half-line and on the method for finding this solution. It is shown that the solution can be found by the successive approximation method, and an estimate of the rate of convergence of the approximations to the exact solution is obtained. Examples are given to illustrate the results obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信