{"title":"全实线上一维薛定谔算子的优化反谱问题","authors":"V. A. Sadovnichii, Ya. T. Sultanaev, N. F. Valeev","doi":"10.1134/s0012266124040050","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the statement of the optimization inverse spectral problem with incomplete\nspectral data for the one-dimensional Schrödinger operator on the entire axis: for a given\npotential <span>\\(q_0 \\)</span>, find the closest function <span>\\(\\hat {q} \\)</span> such that the first <span>\\(m \\)</span> eigenvalues of the Schrödinger operator\nwith potential <span>\\(\\hat {q}\\)</span> coincide with given values <span>\\(\\lambda _k^*\\in \\mathbb {R} \\)</span>, <span>\\(k={1,\\dots ,m}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Inverse Spectral Problem for the One-Dimensional Schrödinger Operator on the Entire Real Line\",\"authors\":\"V. A. Sadovnichii, Ya. T. Sultanaev, N. F. Valeev\",\"doi\":\"10.1134/s0012266124040050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the statement of the optimization inverse spectral problem with incomplete\\nspectral data for the one-dimensional Schrödinger operator on the entire axis: for a given\\npotential <span>\\\\(q_0 \\\\)</span>, find the closest function <span>\\\\(\\\\hat {q} \\\\)</span> such that the first <span>\\\\(m \\\\)</span> eigenvalues of the Schrödinger operator\\nwith potential <span>\\\\(\\\\hat {q}\\\\)</span> coincide with given values <span>\\\\(\\\\lambda _k^*\\\\in \\\\mathbb {R} \\\\)</span>, <span>\\\\(k={1,\\\\dots ,m}\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124040050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization Inverse Spectral Problem for the One-Dimensional Schrödinger Operator on the Entire Real Line
Abstract
We study the statement of the optimization inverse spectral problem with incomplete
spectral data for the one-dimensional Schrödinger operator on the entire axis: for a given
potential \(q_0 \), find the closest function \(\hat {q} \) such that the first \(m \) eigenvalues of the Schrödinger operator
with potential \(\hat {q}\) coincide with given values \(\lambda _k^*\in \mathbb {R} \), \(k={1,\dots ,m}\).