全实线上一维薛定谔算子的优化反谱问题

Pub Date : 2024-07-30 DOI:10.1134/s0012266124040050
V. A. Sadovnichii, Ya. T. Sultanaev, N. F. Valeev
{"title":"全实线上一维薛定谔算子的优化反谱问题","authors":"V. A. Sadovnichii, Ya. T. Sultanaev, N. F. Valeev","doi":"10.1134/s0012266124040050","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the statement of the optimization inverse spectral problem with incomplete\nspectral data for the one-dimensional Schrödinger operator on the entire axis: for a given\npotential <span>\\(q_0 \\)</span>, find the closest function <span>\\(\\hat {q} \\)</span> such that the first <span>\\(m \\)</span> eigenvalues of the Schrödinger operator\nwith potential <span>\\(\\hat {q}\\)</span> coincide with given values <span>\\(\\lambda _k^*\\in \\mathbb {R} \\)</span>, <span>\\(k={1,\\dots ,m}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Inverse Spectral Problem for the One-Dimensional Schrödinger Operator on the Entire Real Line\",\"authors\":\"V. A. Sadovnichii, Ya. T. Sultanaev, N. F. Valeev\",\"doi\":\"10.1134/s0012266124040050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the statement of the optimization inverse spectral problem with incomplete\\nspectral data for the one-dimensional Schrödinger operator on the entire axis: for a given\\npotential <span>\\\\(q_0 \\\\)</span>, find the closest function <span>\\\\(\\\\hat {q} \\\\)</span> such that the first <span>\\\\(m \\\\)</span> eigenvalues of the Schrödinger operator\\nwith potential <span>\\\\(\\\\hat {q}\\\\)</span> coincide with given values <span>\\\\(\\\\lambda _k^*\\\\in \\\\mathbb {R} \\\\)</span>, <span>\\\\(k={1,\\\\dots ,m}\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124040050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一维薛定谔算子在整轴上具有不完整谱数据的优化逆谱问题的陈述:对于给定的势\(q_0 \),找到最接近的函数\(\hat {q} \),使得具有势\(\hat {q}\)的薛定谔算子的第一个特征值与给定值\(\lambda _k^*\in \mathbb {R} \),\(k={1,\dots ,m}\)重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimization Inverse Spectral Problem for the One-Dimensional Schrödinger Operator on the Entire Real Line

Abstract

We study the statement of the optimization inverse spectral problem with incomplete spectral data for the one-dimensional Schrödinger operator on the entire axis: for a given potential \(q_0 \), find the closest function \(\hat {q} \) such that the first \(m \) eigenvalues of the Schrödinger operator with potential \(\hat {q}\) coincide with given values \(\lambda _k^*\in \mathbb {R} \), \(k={1,\dots ,m}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信