有限维简单 $C^*$ 算法的非线性分类

Bojan Kuzma, Sushil Singla
{"title":"有限维简单 $C^*$ 算法的非线性分类","authors":"Bojan Kuzma, Sushil Singla","doi":"arxiv-2407.21582","DOIUrl":null,"url":null,"abstract":"A Banach space characterization of simple real or complex $C^*$-algebras is\ngiven which even characterizes the underlying field. As an application, it is\nshown that if $\\mathfrak A_1$ and $\\mathfrak A_2$ are Birkhoff-James isomorphic\nsimple $C^*$-algebras over the fields $\\mathbb F_1$ and $\\mathbb F_2$,\nrespectively and if $\\mathfrak A_1$ is finite-dimensional with dimension\ngreater than one, then $\\mathbb F_1=\\mathbb F_2$ and $\\mathfrak A_1$ and\n$\\mathfrak A_2$ are (isometrically) $\\ast$-isomorphic $C^*$-algebras.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear classification of finite-dimensional simple $C^*$-algebras\",\"authors\":\"Bojan Kuzma, Sushil Singla\",\"doi\":\"arxiv-2407.21582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Banach space characterization of simple real or complex $C^*$-algebras is\\ngiven which even characterizes the underlying field. As an application, it is\\nshown that if $\\\\mathfrak A_1$ and $\\\\mathfrak A_2$ are Birkhoff-James isomorphic\\nsimple $C^*$-algebras over the fields $\\\\mathbb F_1$ and $\\\\mathbb F_2$,\\nrespectively and if $\\\\mathfrak A_1$ is finite-dimensional with dimension\\ngreater than one, then $\\\\mathbb F_1=\\\\mathbb F_2$ and $\\\\mathfrak A_1$ and\\n$\\\\mathfrak A_2$ are (isometrically) $\\\\ast$-isomorphic $C^*$-algebras.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了简单实数或复数$C^*$-代数的巴拿赫空间特征,它甚至描述了底层域的特征。作为一个应用,它证明了如果 $\mathfrak A_1$ 和 $\mathfrak A_2$ 是在 $\mathbb F_1$ 和 $\mathbb F_2$ 域上的伯克霍夫-詹姆斯同构简单 $C^*$ 对象,并且如果 $\mathfrak A_1$ 是有限维的、如果 $\mathfrak A_1$ 是维数大于一的有限维,那么 $\mathbb F_1=\mathbb F_2$ 和 $\mathfrak A_1$ 和 $\mathfrak A_2$ 是(同构的)$\ast$-同构的 $C^*$-代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear classification of finite-dimensional simple $C^*$-algebras
A Banach space characterization of simple real or complex $C^*$-algebras is given which even characterizes the underlying field. As an application, it is shown that if $\mathfrak A_1$ and $\mathfrak A_2$ are Birkhoff-James isomorphic simple $C^*$-algebras over the fields $\mathbb F_1$ and $\mathbb F_2$, respectively and if $\mathfrak A_1$ is finite-dimensional with dimension greater than one, then $\mathbb F_1=\mathbb F_2$ and $\mathfrak A_1$ and $\mathfrak A_2$ are (isometrically) $\ast$-isomorphic $C^*$-algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信