{"title":"有限维简单 $C^*$ 算法的非线性分类","authors":"Bojan Kuzma, Sushil Singla","doi":"arxiv-2407.21582","DOIUrl":null,"url":null,"abstract":"A Banach space characterization of simple real or complex $C^*$-algebras is\ngiven which even characterizes the underlying field. As an application, it is\nshown that if $\\mathfrak A_1$ and $\\mathfrak A_2$ are Birkhoff-James isomorphic\nsimple $C^*$-algebras over the fields $\\mathbb F_1$ and $\\mathbb F_2$,\nrespectively and if $\\mathfrak A_1$ is finite-dimensional with dimension\ngreater than one, then $\\mathbb F_1=\\mathbb F_2$ and $\\mathfrak A_1$ and\n$\\mathfrak A_2$ are (isometrically) $\\ast$-isomorphic $C^*$-algebras.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear classification of finite-dimensional simple $C^*$-algebras\",\"authors\":\"Bojan Kuzma, Sushil Singla\",\"doi\":\"arxiv-2407.21582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Banach space characterization of simple real or complex $C^*$-algebras is\\ngiven which even characterizes the underlying field. As an application, it is\\nshown that if $\\\\mathfrak A_1$ and $\\\\mathfrak A_2$ are Birkhoff-James isomorphic\\nsimple $C^*$-algebras over the fields $\\\\mathbb F_1$ and $\\\\mathbb F_2$,\\nrespectively and if $\\\\mathfrak A_1$ is finite-dimensional with dimension\\ngreater than one, then $\\\\mathbb F_1=\\\\mathbb F_2$ and $\\\\mathfrak A_1$ and\\n$\\\\mathfrak A_2$ are (isometrically) $\\\\ast$-isomorphic $C^*$-algebras.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-linear classification of finite-dimensional simple $C^*$-algebras
A Banach space characterization of simple real or complex $C^*$-algebras is
given which even characterizes the underlying field. As an application, it is
shown that if $\mathfrak A_1$ and $\mathfrak A_2$ are Birkhoff-James isomorphic
simple $C^*$-algebras over the fields $\mathbb F_1$ and $\mathbb F_2$,
respectively and if $\mathfrak A_1$ is finite-dimensional with dimension
greater than one, then $\mathbb F_1=\mathbb F_2$ and $\mathfrak A_1$ and
$\mathfrak A_2$ are (isometrically) $\ast$-isomorphic $C^*$-algebras.