Romain Calviac, Antoine Monmayrant, Pascal Dubreuil, Laurent Mazenq, Samuel Charlot, Alexandre Gauguet, Baptiste Allard, Olivier Gauthier-Lafaye
{"title":"用于激光冷却的光栅设计方法","authors":"Romain Calviac, Antoine Monmayrant, Pascal Dubreuil, Laurent Mazenq, Samuel Charlot, Alexandre Gauguet, Baptiste Allard, Olivier Gauthier-Lafaye","doi":"10.1364/josab.519552","DOIUrl":null,"url":null,"abstract":"We present a design strategy for grating magneto-optical traps (GMOTs). It takes the three most relevant optical properties for laser cooling (radiation pressure balance, specular reflection cancellation, and diffracted polarization) to build a scalar figure of merit. We use a rigorous coupled wave analysis (RCWA) simulation to find a geometry that maximizes this figure of merit. We also introduce a criterion that takes into account the robustness of the manufacturing processes to select a geometry that is reliable to manufacture. Finally, we demonstrate that the fabricated grating exhibits the expected optical properties and achieves typical GMOT performance.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"148 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grating design methodology for laser cooling\",\"authors\":\"Romain Calviac, Antoine Monmayrant, Pascal Dubreuil, Laurent Mazenq, Samuel Charlot, Alexandre Gauguet, Baptiste Allard, Olivier Gauthier-Lafaye\",\"doi\":\"10.1364/josab.519552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a design strategy for grating magneto-optical traps (GMOTs). It takes the three most relevant optical properties for laser cooling (radiation pressure balance, specular reflection cancellation, and diffracted polarization) to build a scalar figure of merit. We use a rigorous coupled wave analysis (RCWA) simulation to find a geometry that maximizes this figure of merit. We also introduce a criterion that takes into account the robustness of the manufacturing processes to select a geometry that is reliable to manufacture. Finally, we demonstrate that the fabricated grating exhibits the expected optical properties and achieves typical GMOT performance.\",\"PeriodicalId\":501621,\"journal\":{\"name\":\"Journal of the Optical Society of America B\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.519552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.519552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a design strategy for grating magneto-optical traps (GMOTs). It takes the three most relevant optical properties for laser cooling (radiation pressure balance, specular reflection cancellation, and diffracted polarization) to build a scalar figure of merit. We use a rigorous coupled wave analysis (RCWA) simulation to find a geometry that maximizes this figure of merit. We also introduce a criterion that takes into account the robustness of the manufacturing processes to select a geometry that is reliable to manufacture. Finally, we demonstrate that the fabricated grating exhibits the expected optical properties and achieves typical GMOT performance.