Rostislav Arkhipov, Anton Pakhomov, Olga Diachkova, Mikhail Arkhipov, Nikolay Rosanov
{"title":"共振介质中的半周期光脉冲光诱导微腔生成的分析和数值研究","authors":"Rostislav Arkhipov, Anton Pakhomov, Olga Diachkova, Mikhail Arkhipov, Nikolay Rosanov","doi":"10.1364/josab.528871","DOIUrl":null,"url":null,"abstract":"An optical Bragg-like microcavity can be formed when extremely short light pulses interacting coherently with the medium collide in the resonant medium. Here we present an analytical approach, based on the approximate solution of the time-dependent Schrödinger equation, that reveals both the cavity formation and its control by the half-cycle pulses colliding in the medium. This approach allows the calculation of cavity properties in the weak-field regime without the need for complex numerical simulations. Beyond the approximate analytical solutions, our analytical results are confirmed by numerical simulations of the Maxwell-Bloch equations. Grating formation is also studied in the strong-field regime, where collisions of self-induced transparency half-cycle pulses occur. The results presented here reveal, to our knowledge, a new type of spatio-temporal photonic crystal in the form of micro-cavities in a simple atomic medium. The results obtained demonstrate the feasibility of attosecond optical switching in a simple atomic medium with half-cycle pulses.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and numerical study of light-induced optical microcavity generation by half-cycle light pulses in the resonant medium\",\"authors\":\"Rostislav Arkhipov, Anton Pakhomov, Olga Diachkova, Mikhail Arkhipov, Nikolay Rosanov\",\"doi\":\"10.1364/josab.528871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optical Bragg-like microcavity can be formed when extremely short light pulses interacting coherently with the medium collide in the resonant medium. Here we present an analytical approach, based on the approximate solution of the time-dependent Schrödinger equation, that reveals both the cavity formation and its control by the half-cycle pulses colliding in the medium. This approach allows the calculation of cavity properties in the weak-field regime without the need for complex numerical simulations. Beyond the approximate analytical solutions, our analytical results are confirmed by numerical simulations of the Maxwell-Bloch equations. Grating formation is also studied in the strong-field regime, where collisions of self-induced transparency half-cycle pulses occur. The results presented here reveal, to our knowledge, a new type of spatio-temporal photonic crystal in the form of micro-cavities in a simple atomic medium. The results obtained demonstrate the feasibility of attosecond optical switching in a simple atomic medium with half-cycle pulses.\",\"PeriodicalId\":501621,\"journal\":{\"name\":\"Journal of the Optical Society of America B\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.528871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.528871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical and numerical study of light-induced optical microcavity generation by half-cycle light pulses in the resonant medium
An optical Bragg-like microcavity can be formed when extremely short light pulses interacting coherently with the medium collide in the resonant medium. Here we present an analytical approach, based on the approximate solution of the time-dependent Schrödinger equation, that reveals both the cavity formation and its control by the half-cycle pulses colliding in the medium. This approach allows the calculation of cavity properties in the weak-field regime without the need for complex numerical simulations. Beyond the approximate analytical solutions, our analytical results are confirmed by numerical simulations of the Maxwell-Bloch equations. Grating formation is also studied in the strong-field regime, where collisions of self-induced transparency half-cycle pulses occur. The results presented here reveal, to our knowledge, a new type of spatio-temporal photonic crystal in the form of micro-cavities in a simple atomic medium. The results obtained demonstrate the feasibility of attosecond optical switching in a simple atomic medium with half-cycle pulses.