利用 PARAFAC2 对不同实验条件下的单细胞进行高分辨率综合分析

Andrew Ramirez, Brian T Orcutt-Jahns, Sean Pascoe, Armaan Abraham, Breanna Remigio, Nathaniel Thomas, Aaron Samuel Meyer
{"title":"利用 PARAFAC2 对不同实验条件下的单细胞进行高分辨率综合分析","authors":"Andrew Ramirez, Brian T Orcutt-Jahns, Sean Pascoe, Armaan Abraham, Breanna Remigio, Nathaniel Thomas, Aaron Samuel Meyer","doi":"10.1101/2024.07.29.605698","DOIUrl":null,"url":null,"abstract":"Effective tools for exploration and analysis are needed to extract insights from large-scale single-cell measurement data. However, current techniques for handling single-cell studies performed across experimental conditions (e.g., samples, perturbations, or patients) require restrictive assumptions, lack flexibility, or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that the tensor decomposition method PARAFAC2 (Pf2) enables the dimensionality reduction of single-cell data across conditions. We demonstrate these benefits across two distinct contexts of single-cell RNA-sequencing (scRNA-seq) experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus (SLE) patient samples. By isolating relevant gene modules across cells and conditions, Pf2 enables straightforward associations of gene variation patterns across specific patients or perturbations while connecting each coordinated change to certain cells without pre-defining cell types. The theoretical grounding of Pf2 suggests a unified framework for many modeling tasks associated with single-cell data. Thus, Pf2 provides an intuitive universal dimensionality reduction approach for multi-sample single-cell studies across diverse biological contexts.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative, high-resolution analysis of single cells across experimental conditions with PARAFAC2\",\"authors\":\"Andrew Ramirez, Brian T Orcutt-Jahns, Sean Pascoe, Armaan Abraham, Breanna Remigio, Nathaniel Thomas, Aaron Samuel Meyer\",\"doi\":\"10.1101/2024.07.29.605698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective tools for exploration and analysis are needed to extract insights from large-scale single-cell measurement data. However, current techniques for handling single-cell studies performed across experimental conditions (e.g., samples, perturbations, or patients) require restrictive assumptions, lack flexibility, or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that the tensor decomposition method PARAFAC2 (Pf2) enables the dimensionality reduction of single-cell data across conditions. We demonstrate these benefits across two distinct contexts of single-cell RNA-sequencing (scRNA-seq) experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus (SLE) patient samples. By isolating relevant gene modules across cells and conditions, Pf2 enables straightforward associations of gene variation patterns across specific patients or perturbations while connecting each coordinated change to certain cells without pre-defining cell types. The theoretical grounding of Pf2 suggests a unified framework for many modeling tasks associated with single-cell data. Thus, Pf2 provides an intuitive universal dimensionality reduction approach for multi-sample single-cell studies across diverse biological contexts.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.29.605698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.29.605698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要想从大规模单细胞测量数据中获得深刻见解,需要有效的探索和分析工具。然而,目前处理跨实验条件(如样本、扰动或患者)单细胞研究的技术需要限制性假设,缺乏灵活性,或不能从细胞间的变化中充分分解条件间的变化。在这里,我们报告了张量分解方法 PARAFAC2 (Pf2) 可以降低单细胞数据在不同条件下的维度。我们在两种不同的外周免疫细胞单细胞 RNA 序列(scRNA-seq)实验中展示了这些优势:药理药物扰动和系统性红斑狼疮(SLE)患者样本。Pf2 通过分离跨细胞和条件的相关基因模块,可直接关联特定患者或扰动的基因变异模式,同时将每个协调变化与特定细胞联系起来,而无需预先定义细胞类型。Pf2 的理论基础为许多与单细胞数据相关的建模任务提供了一个统一的框架。因此,Pf2 为不同生物背景下的多样本单细胞研究提供了一种直观的通用降维方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative, high-resolution analysis of single cells across experimental conditions with PARAFAC2
Effective tools for exploration and analysis are needed to extract insights from large-scale single-cell measurement data. However, current techniques for handling single-cell studies performed across experimental conditions (e.g., samples, perturbations, or patients) require restrictive assumptions, lack flexibility, or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that the tensor decomposition method PARAFAC2 (Pf2) enables the dimensionality reduction of single-cell data across conditions. We demonstrate these benefits across two distinct contexts of single-cell RNA-sequencing (scRNA-seq) experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus (SLE) patient samples. By isolating relevant gene modules across cells and conditions, Pf2 enables straightforward associations of gene variation patterns across specific patients or perturbations while connecting each coordinated change to certain cells without pre-defining cell types. The theoretical grounding of Pf2 suggests a unified framework for many modeling tasks associated with single-cell data. Thus, Pf2 provides an intuitive universal dimensionality reduction approach for multi-sample single-cell studies across diverse biological contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信