Direct3γ PET:直接三γ PET 图像重建管道

Youness Mellak, Alexandre Bousse, Thibaut Merlin, Debora Giovagnoli, Dimitris Visvikis
{"title":"Direct3γ PET:直接三γ PET 图像重建管道","authors":"Youness Mellak, Alexandre Bousse, Thibaut Merlin, Debora Giovagnoli, Dimitris Visvikis","doi":"arxiv-2407.18337","DOIUrl":null,"url":null,"abstract":"Direct3{\\gamma}PET is a novel, comprehensive pipelinefor direct estimation of\nemission points in three-gamma (3-{\\gamma})positron emission tomography (PET)\nimaging using \\b{eta}+ and {\\gamma}emitters. This approach addresses\nlimitations in existing directreconstruction methods for 3-{\\gamma} PET, which\noften struggle withdetector imperfections and uncertainties in estimated\nintersectionpoints. The pipeline begins by processing raw data, managingprompt\nphoton order in detectors, and propagating energy andspatial uncertainties on\nthe line of response (LOR). It thenconstructs histo-images backprojecting\nnon-symmetric Gaussianprobability density functions (PDFs) in the histo-image,\nwithattenuation correction applied when such data is available.\nAthree-dimensional (3-D) convolutional neural network (CNN)performs image\ntranslation, mapping the histo-image to radioac-tivity image. This architecture\nis trained using both supervisedand adversarial approaches. Our evaluation\ndemonstrates thesuperior performance of this method in balancing event\ninclu-sion and accuracy. For image reconstruction, we compare bothsupervised\nand adversarial neural network (NN) approaches.The adversarial approach shows\nbetter structural preservation,while the supervised approach provides slightly\nimproved noisereduction.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct3γ PET: A Pipeline for Direct Three-gamma PET Image Reconstruction\",\"authors\":\"Youness Mellak, Alexandre Bousse, Thibaut Merlin, Debora Giovagnoli, Dimitris Visvikis\",\"doi\":\"arxiv-2407.18337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct3{\\\\gamma}PET is a novel, comprehensive pipelinefor direct estimation of\\nemission points in three-gamma (3-{\\\\gamma})positron emission tomography (PET)\\nimaging using \\\\b{eta}+ and {\\\\gamma}emitters. This approach addresses\\nlimitations in existing directreconstruction methods for 3-{\\\\gamma} PET, which\\noften struggle withdetector imperfections and uncertainties in estimated\\nintersectionpoints. The pipeline begins by processing raw data, managingprompt\\nphoton order in detectors, and propagating energy andspatial uncertainties on\\nthe line of response (LOR). It thenconstructs histo-images backprojecting\\nnon-symmetric Gaussianprobability density functions (PDFs) in the histo-image,\\nwithattenuation correction applied when such data is available.\\nAthree-dimensional (3-D) convolutional neural network (CNN)performs image\\ntranslation, mapping the histo-image to radioac-tivity image. This architecture\\nis trained using both supervisedand adversarial approaches. Our evaluation\\ndemonstrates thesuperior performance of this method in balancing event\\ninclu-sion and accuracy. For image reconstruction, we compare bothsupervised\\nand adversarial neural network (NN) approaches.The adversarial approach shows\\nbetter structural preservation,while the supervised approach provides slightly\\nimproved noisereduction.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直接3{\gamma}PET是一种新颖、全面的管道,用于使用\b{eta}+和{\gamma}发射体直接估计三伽马(3-{\gamma})正电子发射断层成像(PET)中的发射点。这种方法解决了现有 3-{gamma} PET 直接重建方法的局限性,因为这种方法通常会因探测器的不完善和估计交点的不确定性而受到影响。该流水线首先处理原始数据,管理探测器中的前向光子顺序,并在响应线(LOR)上传播能量和空间不确定性。然后,它在组织图像中反向推算非对称高斯概率密度函数(PDF),并在有此类数据时应用衰减校正。三维(3-D)卷积神经网络(CNN)执行图像转换,将组织图像映射到射电透射率图像。该架构采用监督和对抗两种方法进行训练。我们的评估结果表明,这种方法在兼顾事件包容性和准确性方面具有更优越的性能。在图像重建方面,我们比较了监督和对抗两种神经网络(NN)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct3γ PET: A Pipeline for Direct Three-gamma PET Image Reconstruction
Direct3{\gamma}PET is a novel, comprehensive pipelinefor direct estimation of emission points in three-gamma (3-{\gamma})positron emission tomography (PET) imaging using \b{eta}+ and {\gamma}emitters. This approach addresses limitations in existing directreconstruction methods for 3-{\gamma} PET, which often struggle withdetector imperfections and uncertainties in estimated intersectionpoints. The pipeline begins by processing raw data, managingprompt photon order in detectors, and propagating energy andspatial uncertainties on the line of response (LOR). It thenconstructs histo-images backprojecting non-symmetric Gaussianprobability density functions (PDFs) in the histo-image, withattenuation correction applied when such data is available. Athree-dimensional (3-D) convolutional neural network (CNN)performs image translation, mapping the histo-image to radioac-tivity image. This architecture is trained using both supervisedand adversarial approaches. Our evaluation demonstrates thesuperior performance of this method in balancing event inclu-sion and accuracy. For image reconstruction, we compare bothsupervised and adversarial neural network (NN) approaches.The adversarial approach shows better structural preservation,while the supervised approach provides slightly improved noisereduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信