如何使用二维模型进行三维分割:利用多角度最大强度投影和弥散模型对正电子发射计算机断层上的前列腺癌转移病灶进行自动三维分离

Amirhosein Toosi, Sara Harsini, François Bénard, Carlos Uribe, Arman Rahmim
{"title":"如何使用二维模型进行三维分割:利用多角度最大强度投影和弥散模型对正电子发射计算机断层上的前列腺癌转移病灶进行自动三维分离","authors":"Amirhosein Toosi, Sara Harsini, François Bénard, Carlos Uribe, Arman Rahmim","doi":"arxiv-2407.18555","DOIUrl":null,"url":null,"abstract":"Prostate specific membrane antigen (PSMA) positron emission\ntomography/computed tomography (PET/CT) imaging provides a tremendously\nexciting frontier in visualization of prostate cancer (PCa) metastatic lesions.\nHowever, accurate segmentation of metastatic lesions is challenging due to low\nsignal-to-noise ratios and variable sizes, shapes, and locations of the\nlesions. This study proposes a novel approach for automated segmentation of\nmetastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising\ndiffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D\nvolumes, the proposed approach segments the lesions on generated multi-angle\nmaximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains\nthe final 3D segmentation masks from 3D ordered subset expectation maximization\n(OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved\nsuperior performance compared to state-of-the-art 3D segmentation approaches in\nterms of accuracy and robustness in detecting and segmenting small metastatic\nPCa lesions. The proposed method has significant potential as a tool for\nquantitative analysis of metastatic burden in PCa patients.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How To Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-Angle Maximum Intensity Projections and Diffusion Models\",\"authors\":\"Amirhosein Toosi, Sara Harsini, François Bénard, Carlos Uribe, Arman Rahmim\",\"doi\":\"arxiv-2407.18555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate specific membrane antigen (PSMA) positron emission\\ntomography/computed tomography (PET/CT) imaging provides a tremendously\\nexciting frontier in visualization of prostate cancer (PCa) metastatic lesions.\\nHowever, accurate segmentation of metastatic lesions is challenging due to low\\nsignal-to-noise ratios and variable sizes, shapes, and locations of the\\nlesions. This study proposes a novel approach for automated segmentation of\\nmetastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising\\ndiffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D\\nvolumes, the proposed approach segments the lesions on generated multi-angle\\nmaximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains\\nthe final 3D segmentation masks from 3D ordered subset expectation maximization\\n(OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved\\nsuperior performance compared to state-of-the-art 3D segmentation approaches in\\nterms of accuracy and robustness in detecting and segmenting small metastatic\\nPCa lesions. The proposed method has significant potential as a tool for\\nquantitative analysis of metastatic burden in PCa patients.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前列腺特异性膜抗原(PSMA)正电子发射断层扫描/计算机断层扫描(PET/CT)成像为前列腺癌(PCa)转移病灶的可视化提供了一个非常令人兴奋的前沿领域。然而,由于低信噪比以及病灶的大小、形状和位置多变,准确分割转移病灶具有挑战性。本研究提出了一种利用二维变染扩散概率模型(DDPM)自动分割 PSMA PET/CT 三维容积图像中转移病灶的新方法。该方法不使用二维经轴切片或三维容积,而是在 PSMA PET 图像生成的多角度最大强度投影(MA-MIPs)上分割病灶,然后从二维 MA-MIPs 分割的三维有序子集期望最大化(OSEM)重建中获得最终的三维分割掩膜。与最先进的三维分割方法相比,我们提出的方法在检测和分割小的转移性肺癌病灶的准确性和鲁棒性方面性能更优。所提出的方法作为定量分析 PCa 患者转移负荷的工具具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How To Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-Angle Maximum Intensity Projections and Diffusion Models
Prostate specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) imaging provides a tremendously exciting frontier in visualization of prostate cancer (PCa) metastatic lesions. However, accurate segmentation of metastatic lesions is challenging due to low signal-to-noise ratios and variable sizes, shapes, and locations of the lesions. This study proposes a novel approach for automated segmentation of metastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising diffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D volumes, the proposed approach segments the lesions on generated multi-angle maximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains the final 3D segmentation masks from 3D ordered subset expectation maximization (OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved superior performance compared to state-of-the-art 3D segmentation approaches in terms of accuracy and robustness in detecting and segmenting small metastatic PCa lesions. The proposed method has significant potential as a tool for quantitative analysis of metastatic burden in PCa patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信