利用不确定性量化建立可靠的溶血模型:解决实验变异的通用方法

Christopher Blum, Ulrich Steinseifer, Michael Neidlin
{"title":"利用不确定性量化建立可靠的溶血模型:解决实验变异的通用方法","authors":"Christopher Blum, Ulrich Steinseifer, Michael Neidlin","doi":"arxiv-2407.18757","DOIUrl":null,"url":null,"abstract":"Purpose: The purpose of this study is to address the lack of uncertainty\nquantification in numerical hemolysis models, which are critical for medical\ndevice evaluations. Specifically, we aim to incorporate experimental\nvariability into these models using the Markov Chain Monte Carlo (MCMC) method\nto enhance predictive accuracy and robustness. Methods: We applied the MCMC method to an experimental hemolysis dataset to\nderive detailed stochastic distributions for the hemolysis Power Law model\nparameters $C$, $\\alpha$ and $\\beta$. These distributions were then propagated\nthrough a reduced order model of the FDA benchmark pump to quantify the\nexperimental uncertainty in hemolysis measurements with respect to the\npredicted pump hemolysis. Results: The MCMC analysis revealed multiple local minima in the sum of\nsquared errors, highlighting the non-uniqueness of traditional Power Law model\nfitting. The MCMC results showed a constant optimal $C=3.515x10-5$ and log\nnormal distributions of $\\alpha$ and $\\beta$ with means of 0.614 and 1.795,\nrespectively. The MCMC model closely matched the mean and variance of\nexperimental data. In comparison, conventional deterministic models are not\nable to describe experimental variation. Conclusion: Incorporating Uncertainty quantification through MCMC enhances\nthe robustness and predictive accuracy of hemolysis models. This method allows\nfor better comparison of simulated hemolysis outcomes with in-vivo experiments\nand can integrate additional datasets, potentially setting a new standard in\nhemolysis modeling.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"10881 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Robust Hemolysis Modeling with Uncertainty Quantification: A Universal Approach to Address Experimental Variance\",\"authors\":\"Christopher Blum, Ulrich Steinseifer, Michael Neidlin\",\"doi\":\"arxiv-2407.18757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: The purpose of this study is to address the lack of uncertainty\\nquantification in numerical hemolysis models, which are critical for medical\\ndevice evaluations. Specifically, we aim to incorporate experimental\\nvariability into these models using the Markov Chain Monte Carlo (MCMC) method\\nto enhance predictive accuracy and robustness. Methods: We applied the MCMC method to an experimental hemolysis dataset to\\nderive detailed stochastic distributions for the hemolysis Power Law model\\nparameters $C$, $\\\\alpha$ and $\\\\beta$. These distributions were then propagated\\nthrough a reduced order model of the FDA benchmark pump to quantify the\\nexperimental uncertainty in hemolysis measurements with respect to the\\npredicted pump hemolysis. Results: The MCMC analysis revealed multiple local minima in the sum of\\nsquared errors, highlighting the non-uniqueness of traditional Power Law model\\nfitting. The MCMC results showed a constant optimal $C=3.515x10-5$ and log\\nnormal distributions of $\\\\alpha$ and $\\\\beta$ with means of 0.614 and 1.795,\\nrespectively. The MCMC model closely matched the mean and variance of\\nexperimental data. In comparison, conventional deterministic models are not\\nable to describe experimental variation. Conclusion: Incorporating Uncertainty quantification through MCMC enhances\\nthe robustness and predictive accuracy of hemolysis models. This method allows\\nfor better comparison of simulated hemolysis outcomes with in-vivo experiments\\nand can integrate additional datasets, potentially setting a new standard in\\nhemolysis modeling.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"10881 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在解决数值溶血模型中缺乏不确定性量化的问题,这对医疗设备评估至关重要。具体来说,我们旨在使用马尔可夫链蒙特卡罗 (MCMC) 方法将实验不确定性纳入这些模型,以提高预测准确性和稳健性。方法:我们将 MCMC 方法应用于实验溶血数据集,以得出溶血幂律模型参数 $C$、$\alpha$ 和 $\beta$的详细随机分布。然后通过 FDA 基准泵的降阶模型传播这些分布,以量化溶血测量中相对于预测泵溶血的实验不确定性。结果:MCMC 分析揭示了平方误差之和的多个局部最小值,突出了传统幂律拟合模型的非唯一性。MCMC 结果显示,最佳常数 $C=3.515x10-5$ 和对数正态分布的 $\alpha$ 和 $\beta$ 的均值分别为 0.614 和 1.795。MCMC 模型与实验数据的均值和方差非常吻合。相比之下,传统的确定性模型在描述实验变异方面表现不佳。结论通过 MCMC 对不确定性进行量化,增强了溶血模型的稳健性和预测准确性。这种方法可以将模拟溶血结果与体内实验进行更好的比较,并能整合更多的数据集,有可能为溶血建模设定新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Robust Hemolysis Modeling with Uncertainty Quantification: A Universal Approach to Address Experimental Variance
Purpose: The purpose of this study is to address the lack of uncertainty quantification in numerical hemolysis models, which are critical for medical device evaluations. Specifically, we aim to incorporate experimental variability into these models using the Markov Chain Monte Carlo (MCMC) method to enhance predictive accuracy and robustness. Methods: We applied the MCMC method to an experimental hemolysis dataset to derive detailed stochastic distributions for the hemolysis Power Law model parameters $C$, $\alpha$ and $\beta$. These distributions were then propagated through a reduced order model of the FDA benchmark pump to quantify the experimental uncertainty in hemolysis measurements with respect to the predicted pump hemolysis. Results: The MCMC analysis revealed multiple local minima in the sum of squared errors, highlighting the non-uniqueness of traditional Power Law model fitting. The MCMC results showed a constant optimal $C=3.515x10-5$ and log normal distributions of $\alpha$ and $\beta$ with means of 0.614 and 1.795, respectively. The MCMC model closely matched the mean and variance of experimental data. In comparison, conventional deterministic models are not able to describe experimental variation. Conclusion: Incorporating Uncertainty quantification through MCMC enhances the robustness and predictive accuracy of hemolysis models. This method allows for better comparison of simulated hemolysis outcomes with in-vivo experiments and can integrate additional datasets, potentially setting a new standard in hemolysis modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信