论投影空间的完美平衡无彩虹着色和完全着色

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lijun Ma, Zihong Tian
{"title":"论投影空间的完美平衡无彩虹着色和完全着色","authors":"Lijun Ma, Zihong Tian","doi":"10.1007/s40840-024-01746-9","DOIUrl":null,"url":null,"abstract":"<p>This paper is motivated by the problem of determining the related chromatic numbers of some hypergraphs. A hypergraph <span>\\(\\Pi _{q}(n,k)\\)</span> is defined from a projective space PG<span>\\((n-1,q)\\)</span>, where the vertices are points and the hyperedges are <span>\\((k-1)\\)</span>-dimensional subspaces. For the perfect balanced rainbow-free colorings, we show that <span>\\({\\overline{\\chi }}_{p}(\\Pi _{q}(n,k))=\\frac{q^n-1}{l(q-1)}\\)</span>, where <span>\\(k\\ge \\lceil \\frac{n+1}{2}\\rceil \\)</span> and <i>l</i> is the smallest nontrivial factor of <span>\\(\\frac{q^n-1}{q-1}\\)</span>. For the complete colorings, we prove that there is no complete coloring for <span>\\(\\Pi _{q}(n,k)\\)</span> with <span>\\(2\\le k&lt;n\\)</span>. We also provide some results on the related chromatic numbers of subhypergraphs of <span>\\(\\Pi _{q}(n,k)\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Perfect Balanced Rainbow-Free Colorings and Complete Colorings of Projective Spaces\",\"authors\":\"Lijun Ma, Zihong Tian\",\"doi\":\"10.1007/s40840-024-01746-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is motivated by the problem of determining the related chromatic numbers of some hypergraphs. A hypergraph <span>\\\\(\\\\Pi _{q}(n,k)\\\\)</span> is defined from a projective space PG<span>\\\\((n-1,q)\\\\)</span>, where the vertices are points and the hyperedges are <span>\\\\((k-1)\\\\)</span>-dimensional subspaces. For the perfect balanced rainbow-free colorings, we show that <span>\\\\({\\\\overline{\\\\chi }}_{p}(\\\\Pi _{q}(n,k))=\\\\frac{q^n-1}{l(q-1)}\\\\)</span>, where <span>\\\\(k\\\\ge \\\\lceil \\\\frac{n+1}{2}\\\\rceil \\\\)</span> and <i>l</i> is the smallest nontrivial factor of <span>\\\\(\\\\frac{q^n-1}{q-1}\\\\)</span>. For the complete colorings, we prove that there is no complete coloring for <span>\\\\(\\\\Pi _{q}(n,k)\\\\)</span> with <span>\\\\(2\\\\le k&lt;n\\\\)</span>. We also provide some results on the related chromatic numbers of subhypergraphs of <span>\\\\(\\\\Pi _{q}(n,k)\\\\)</span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01746-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01746-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的灵感来自于确定一些超图的相关色度数的问题。超图 ((pi _{q}(n,k)\)是从投影空间 PG\((n-1,q)\) 定义的,其中顶点是点,超边是((k-1)\)维子空间。对于完美平衡的无彩虹着色,我们证明了\({\overline{chi }}_{p}(\Pi _{q}(n,k))=\frac{q^n-1}{l(q-1)}\),其中\(k\ge \lceil \frac{n+1}{2}\rceil \)和l是\(\frac{q^n-1}{q-1}\)的最小非琐因子。对于完全着色,我们证明不存在有 \(2\le k<n\) 的 \(\Pi _{q}(n,k)\) 的完全着色。我们还提供了一些关于 \(\Pi _{q}(n,k)\) 的子超图的相关色度数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Perfect Balanced Rainbow-Free Colorings and Complete Colorings of Projective Spaces

On Perfect Balanced Rainbow-Free Colorings and Complete Colorings of Projective Spaces

This paper is motivated by the problem of determining the related chromatic numbers of some hypergraphs. A hypergraph \(\Pi _{q}(n,k)\) is defined from a projective space PG\((n-1,q)\), where the vertices are points and the hyperedges are \((k-1)\)-dimensional subspaces. For the perfect balanced rainbow-free colorings, we show that \({\overline{\chi }}_{p}(\Pi _{q}(n,k))=\frac{q^n-1}{l(q-1)}\), where \(k\ge \lceil \frac{n+1}{2}\rceil \) and l is the smallest nontrivial factor of \(\frac{q^n-1}{q-1}\). For the complete colorings, we prove that there is no complete coloring for \(\Pi _{q}(n,k)\) with \(2\le k<n\). We also provide some results on the related chromatic numbers of subhypergraphs of \(\Pi _{q}(n,k)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信