Orca:利用时空感知大语言模型估算海洋显著波高

Zhe Li, Ronghui Xu, Jilin Hu, Zhong Peng, Xi Lu, Chenjuan Guo, Bin Yang
{"title":"Orca:利用时空感知大语言模型估算海洋显著波高","authors":"Zhe Li, Ronghui Xu, Jilin Hu, Zhong Peng, Xi Lu, Chenjuan Guo, Bin Yang","doi":"arxiv-2407.20053","DOIUrl":null,"url":null,"abstract":"Significant wave height (SWH) is a vital metric in marine science, and\naccurate SWH estimation is crucial for various applications, e.g., marine\nenergy development, fishery, early warning systems for potential risks, etc.\nTraditional SWH estimation methods that are based on numerical models and\nphysical theories are hindered by computational inefficiencies. Recently,\nmachine learning has emerged as an appealing alternative to improve accuracy\nand reduce computational time. However, due to limited observational technology\nand high costs, the scarcity of real-world data restricts the potential of\nmachine learning models. To overcome these limitations, we propose an ocean SWH\nestimation framework, namely Orca. Specifically, Orca enhances the limited\nspatio-temporal reasoning abilities of classic LLMs with a novel spatiotemporal\naware encoding module. By segmenting the limited buoy observational data\ntemporally, encoding the buoys' locations spatially, and designing prompt\ntemplates, Orca capitalizes on the robust generalization ability of LLMs to\nestimate significant wave height effectively with limited data. Experimental\nresults on the Gulf of Mexico demonstrate that Orca achieves state-of-the-art\nperformance in SWH estimation.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orca: Ocean Significant Wave Height Estimation with Spatio-temporally Aware Large Language Models\",\"authors\":\"Zhe Li, Ronghui Xu, Jilin Hu, Zhong Peng, Xi Lu, Chenjuan Guo, Bin Yang\",\"doi\":\"arxiv-2407.20053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant wave height (SWH) is a vital metric in marine science, and\\naccurate SWH estimation is crucial for various applications, e.g., marine\\nenergy development, fishery, early warning systems for potential risks, etc.\\nTraditional SWH estimation methods that are based on numerical models and\\nphysical theories are hindered by computational inefficiencies. Recently,\\nmachine learning has emerged as an appealing alternative to improve accuracy\\nand reduce computational time. However, due to limited observational technology\\nand high costs, the scarcity of real-world data restricts the potential of\\nmachine learning models. To overcome these limitations, we propose an ocean SWH\\nestimation framework, namely Orca. Specifically, Orca enhances the limited\\nspatio-temporal reasoning abilities of classic LLMs with a novel spatiotemporal\\naware encoding module. By segmenting the limited buoy observational data\\ntemporally, encoding the buoys' locations spatially, and designing prompt\\ntemplates, Orca capitalizes on the robust generalization ability of LLMs to\\nestimate significant wave height effectively with limited data. Experimental\\nresults on the Gulf of Mexico demonstrate that Orca achieves state-of-the-art\\nperformance in SWH estimation.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显波高度(SWH)是海洋科学中的一个重要指标,精确的显波高度估算对各种应用至关重要,例如海洋能源开发、渔业、潜在风险预警系统等。传统的 SWH 估算方法基于数值模型和物理理论,由于计算效率低下而受到阻碍。最近,机器学习作为一种有吸引力的替代方法出现了,它可以提高估算精度并缩短计算时间。然而,由于观测技术有限和成本高昂,真实世界数据的稀缺限制了机器学习模型的潜力。为了克服这些限制,我们提出了一个海洋 SWH 估算框架,即 Orca。具体来说,Orca 利用新型时空感知编码模块增强了经典 LLM 的有限时空推理能力。通过对有限的浮标观测数据进行时空分割、对浮标位置进行空间编码以及设计提示模板,Orca 利用了 LLM 的强大泛化能力,从而在数据有限的情况下有效地估算出了显著波高。墨西哥湾的实验结果表明,Orca 在估计 SWH 方面达到了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orca: Ocean Significant Wave Height Estimation with Spatio-temporally Aware Large Language Models
Significant wave height (SWH) is a vital metric in marine science, and accurate SWH estimation is crucial for various applications, e.g., marine energy development, fishery, early warning systems for potential risks, etc. Traditional SWH estimation methods that are based on numerical models and physical theories are hindered by computational inefficiencies. Recently, machine learning has emerged as an appealing alternative to improve accuracy and reduce computational time. However, due to limited observational technology and high costs, the scarcity of real-world data restricts the potential of machine learning models. To overcome these limitations, we propose an ocean SWH estimation framework, namely Orca. Specifically, Orca enhances the limited spatio-temporal reasoning abilities of classic LLMs with a novel spatiotemporal aware encoding module. By segmenting the limited buoy observational data temporally, encoding the buoys' locations spatially, and designing prompt templates, Orca capitalizes on the robust generalization ability of LLMs to estimate significant wave height effectively with limited data. Experimental results on the Gulf of Mexico demonstrate that Orca achieves state-of-the-art performance in SWH estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信