基于跳跃回归和局部聚类的自适应图像去噪方法

Subhasish Basak, Partha Sarathi Mukherjee
{"title":"基于跳跃回归和局部聚类的自适应图像去噪方法","authors":"Subhasish Basak, Partha Sarathi Mukherjee","doi":"arxiv-2407.20210","DOIUrl":null,"url":null,"abstract":"Image denoising is crucial for reliable image analysis. Researchers from\ndiverse fields have long worked on this, but we still need better solutions.\nThis article focuses on efficiently preserving key image features like edges\nand structures during denoising. Jump regression analysis is commonly used to\nestimate true image intensity amid noise. One approach is adaptive smoothing,\nwhich uses various local neighborhood shapes and sizes based on empirical data,\nwhile another is local pixel clustering to reduce noise while maintaining\nimportant details. This manuscript combines both methods to propose an\nintegrated denoising technique.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Image-denoising Method Based on Jump Regression and Local Clustering\",\"authors\":\"Subhasish Basak, Partha Sarathi Mukherjee\",\"doi\":\"arxiv-2407.20210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising is crucial for reliable image analysis. Researchers from\\ndiverse fields have long worked on this, but we still need better solutions.\\nThis article focuses on efficiently preserving key image features like edges\\nand structures during denoising. Jump regression analysis is commonly used to\\nestimate true image intensity amid noise. One approach is adaptive smoothing,\\nwhich uses various local neighborhood shapes and sizes based on empirical data,\\nwhile another is local pixel clustering to reduce noise while maintaining\\nimportant details. This manuscript combines both methods to propose an\\nintegrated denoising technique.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像去噪对于可靠的图像分析至关重要。本文的重点是在去噪过程中有效保留边缘和结构等关键图像特征。跃迁回归分析通常用于在噪声中估计真实的图像强度。一种方法是自适应平滑,它根据经验数据使用不同的局部邻域形状和大小;另一种方法是局部像素聚类,在减少噪声的同时保留重要细节。本手稿将这两种方法结合起来,提出了一种综合去噪技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Image-denoising Method Based on Jump Regression and Local Clustering
Image denoising is crucial for reliable image analysis. Researchers from diverse fields have long worked on this, but we still need better solutions. This article focuses on efficiently preserving key image features like edges and structures during denoising. Jump regression analysis is commonly used to estimate true image intensity amid noise. One approach is adaptive smoothing, which uses various local neighborhood shapes and sizes based on empirical data, while another is local pixel clustering to reduce noise while maintaining important details. This manuscript combines both methods to propose an integrated denoising technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信