关于泊松加法过程的评论

Haoming Wang
{"title":"关于泊松加法过程的评论","authors":"Haoming Wang","doi":"arxiv-2407.21651","DOIUrl":null,"url":null,"abstract":"The Poisson additive process is a binary conditionally additive process such\nthat the first is the Poisson process provided the second is given. We prove\nthe existence and uniqueness of predictable increasing mean intensity for the\nPoisson additive process. Besides, we establish a likelihood ratio formula for\nthe Poisson additive process. It directly implies there doesn't exist an\nanticipative Poisson additive process which is absolutely continuous with\nrespect to the standard Poisson process, which confirms a conjecture proposed\nby P. Br\\'emaud in his PhD thesis in 1972. When applied to the Hawkes process,\nit concludes that the self-exciting function is constant. Similar results are\nalso obtained for the Wiener additive process and Markov additive process.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on the Poisson additive process\",\"authors\":\"Haoming Wang\",\"doi\":\"arxiv-2407.21651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Poisson additive process is a binary conditionally additive process such\\nthat the first is the Poisson process provided the second is given. We prove\\nthe existence and uniqueness of predictable increasing mean intensity for the\\nPoisson additive process. Besides, we establish a likelihood ratio formula for\\nthe Poisson additive process. It directly implies there doesn't exist an\\nanticipative Poisson additive process which is absolutely continuous with\\nrespect to the standard Poisson process, which confirms a conjecture proposed\\nby P. Br\\\\'emaud in his PhD thesis in 1972. When applied to the Hawkes process,\\nit concludes that the self-exciting function is constant. Similar results are\\nalso obtained for the Wiener additive process and Markov additive process.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

泊松加法过程是一种二元条件加法过程,只要给定第二个条件,第一个条件就是泊松过程。我们证明了泊松加法过程的可预测平均强度递增的存在性和唯一性。此外,我们还建立了泊松加法过程的似然比公式。这直接意味着不存在一个相对于标准泊松过程绝对连续的预期泊松加性过程,从而证实了布劳德(P. Br\'emaud )在 1972 年博士论文中提出的猜想。当应用于霍克斯过程时,它的结论是自激函数是常数。维纳加性过程和马尔可夫加性过程也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on the Poisson additive process
The Poisson additive process is a binary conditionally additive process such that the first is the Poisson process provided the second is given. We prove the existence and uniqueness of predictable increasing mean intensity for the Poisson additive process. Besides, we establish a likelihood ratio formula for the Poisson additive process. It directly implies there doesn't exist an anticipative Poisson additive process which is absolutely continuous with respect to the standard Poisson process, which confirms a conjecture proposed by P. Br\'emaud in his PhD thesis in 1972. When applied to the Hawkes process, it concludes that the self-exciting function is constant. Similar results are also obtained for the Wiener additive process and Markov additive process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信